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Abstract—Image enhancement using high-dynamic range (HDR) 
images is widely exploited; however, it is limited by detail loss 
and excessive color generation. In addition, capturing HDR 
images by commercial digital cameras is problematic. In this 
paper, we propose an image enhancement technique of fusing two 
images with different exposures. In order to reduce unnatural 
color changes in the fused image, initially we modify the lightness 
of the less-exposed image according to that of the highly exposed 
image. Then, we design a Markov random field model (MRF) by 
considering a gradient, chrominance, and smoothness constraint. 
Further, the MRF model is optimized via belief propagation. 
Experimental results show that the proposed algorithm generates 
more natural results than other state-of-the-art algorithms. 

Keywords— Image enhancement; High dynamic range image; 
Markov random field; Image fusion. 

I.  INTRODUCTION 
In general, commercial digital cameras are not able to 

capture scenes as humans see. In many cases improper camera 
settings often lead to this problem, but the limited dynamic 
range of digital cameras is the primary reason. The scene 
luminance, which humans are able to perceive, varies between 
10-3 and 105 cd/m2; however, the dynamic range of an ordinary 
digital camera is only about 102 [1].  

When capturing such scenes with low exposure, textures 
are accurately captured in brighter regions while they are noisy 
or lost in darker regions, and vice versa.  In particular, the main 
factors of this problem are low-dynamic range (LDR) and bit 
depth for grey level representation. 

In order to improve the visual quality of such images, 
various image enhancement methods have been proposed and 
used in many applications, e.g., contrast enhancement, noise 
reduction, and distortion compensation. In particular, image 
enhancement modifies the quality of LDR images for better 
human visual perception. 

However, original texture reconstruction is challenging 
since LDR images do not possess sufficient data in many cases. 
Therefore, high-dynamic range (HDR) imaging takes center 
stage. Compared to LDR imaging, HDR imaging uses wider 
dynamic range, larger bit depth, and higher fidelity [2]-[5]. 
Such advantages make HDR imaging practical in numerous 
applications, e.g., contrast enhancement and backlight 
compensation. HDR images can be acquired from multiple 
photographs and computer graphics, or with a multiple 
exposure sensor [4], [6].  

Since the display devices which can cover HDR images are 
not common, the HDR images have to be compressed again 
into LDR images via tone mapping. The main goal of tone 
mapping is to preserve texture details without distortion. To 
this end, various approaches have been proposed in the last 
decade. 

These approaches can be divided into local and global 
algorithms. The global algorithms use the same tone mapping 
curve to every pixel and compress the dynamic range with 
lower time and space costs [7], [8]. Although they are 
successful in solving tone reproduction, the output images tend 
to be lack of texture details. Unlike the global algorithms, the 
local algorithms adopt different tone mapping curves to each 
pixel and operate by taking its surroundings [16], [17]. They 
improve local details and contrast; however, excessive visual 
deterioration can be induced. 

In this paper, to solve such problems, we propose an image 
fusion method using Markov random field (MRF). Our method 
takes two differently exposed images as inputs; then we 
effectively combine them while preserving details. In order to 
take natural color changes into account, we also introduce 
lightness matching, color mapping, and global tone mapping. 

II. IMAGE ENHANCEMENT 
As mentioned in Sec. I, many algorithms related to image 

enhancement have been studied. In this section, we give a brief 
coverage of such algorithms sharing some similar features with 
our method. They can be categorized into either LDR or HDR 
image-based algorithms. 

A. LDR Image-based Algorithm 
Histogram stretching and equalization are widely used for 

visual quality enhancement of LDR images. These methods 
provide reliable results while excessive changes can be induced 
sometimes. Hence, various alternative algorithms have been 
proposed, minimizing excessive changes. 

Menotti et al. have proposed a contrast enhancement 
algorithm which exploits bi-histogram equalization [9]. They 
decompose an input LDR image into several sub-images, 
equalizing each sub-histogram. This method achieves natural 
visual quality at the cost but less enhancement in contrast. 
Sengee et al. also have proposed bi-histogram equalization 
using a neighborhood metric [10]. For further improvement, 
this method divides large histogram bins into several sub-bins, 
arranging the intensity of the original LDR image with 
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considering the neighbors. In addition, they reduce unnatural 
changes by equalizing two sub-histograms from a histogram 
average. 

Kim et al. have adopted gain-controllable clipped 
histogram equalization for brightness preservation and detail 
enhancement [11]. They calculate the clipping-rate with 
consideration of averaging brightness; then thresholds are 
estimated from the rate. Tsai et al. have used a piecewise linear 
transformation in the HSV color domain to avoid non-linear 
approaches of histogram equalization [12].  

Although the above algorithms provide reliable results, they 
are limited by less detail in input LDR images. 

B. HDR Image-based Algorithm 
HDR image-based enhancement takes center stage as an 

alternative to LDR image-based approaches due to the 
capturing of detail textures over a dynamic range wider than 
LDR. The key is to effectively compressing HDR to LDR 
while preserving texture details. For tone mapping, global and 
local approaches exist as mentioned in the introduction section. 

Global approaches adopt a spatially invariant mapping 
curve [13]. Drago et al. have developed logarithmic 
compression imitating the human response to light, proposing 
improved gamma correction for contrast enhancement in dark 
regions [14]. Larson et al. have introduced a histogram 
adjustment technique based on the population of local 
adaptation. They consider contrast and color sensitivities to 
match viewing experience [15].  

In general, global approaches are speedy and fabricate 
natural results. However, they provide lower visual qualities 
than local approaches which use spatially variant mapping 
curves. Reinhard et al. have applied scaling which is analogous 
to exposure information. Moreover, dodging-and-burning is 
included to accomplish tone reproduction [16]. Goshtasby have 
proposed a tone mapping algorithm which divides input images 
into uniform blocks and maximizes entropy in each block [17]. 
Nevertheless, this approach can cause block and boundary 
artifacts due to the adoption of regular blocks, especially 
relatively large blocks. Wang et al. have adopted adaptive local 
regions for revealing details while maintaining overall 
impression of inputs [18]. They used local tone and color 
mapping based on the adaptive local regions. 

Recently, Jinno et al. estimate irradiance for each pixel and 
evaluate displacement and saturation via maximum a posteriori 
(MAP) estimation. In addition, they proposed a weighting 
scheme for HDR image generation [19]. Cvetkovic et al. have 
developed a tone mapping function using knee and gamma 
reproduction for enhancing visibility of details [20]. 

III. IMAGE FUSION USING MRF 
Although HDR image-based algorithm shows higher 

quality results than LDR, generating a radiance map for 
commercial digital cameras is inefficient. Further, local tone 
mapping can induce unnatural color changes. Thus, we propose 
an image fusion algorithm with lowly-exposed (IL) and highly-
exposed (IH) images to solve such problems.  

Fig. 1 shows the overall procedure of the proposed 
algorithm. The arrows in the boxes represent relative dynamic 
range and bit depth of each image. The proposed system 
matches lightness of two input images and fuses them via a 
MRF model for texture detail enhancement. Finally, we 
conduct color mapping and global tone reproduction. 

 

 
Fig. 1. Process flow of the proposed system. 

 

We generate a fusion image IF with I*
L and IH. In order to 

preserve and enhance texture details, we selectively bring high 
contrast textures from I*

L and IH. It can be regarded as a 
labeling problem for assigning a label s to each pixel of IF. 
The label has two components. In particular one represents the 
selected image as s = {Low, High}. The other is a set S for 
labeling of the pixels in IF in terms of the labels in s. We use 
the information of IL instead of I*

L for image fusion, since IL 
has more accurate gradient information than I*

L. By applying 
the Bayes rule, the posterior probability of S is written by 
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where P(S) is the prior probability of the labeling set S. P(IL, 
IH|S) is the conditional probability density function of IL and 
IH given S. P(IL, IH) is ignorable since unknowns are 
contained; this is a constant when IL and IH are given. 
Therefore, the MAP is equivalently found by 
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Since we design a model of S via the MRFs, the posterior 
probability P(S|IL, IH) can be characterized by the Gibbs 
distribution as 
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where U, Z, and T denote energy function, normalization 
constant, and temperature, respectively. Consecutively, MAP 
estimation can be replaced by the minimization problem of the 
energy function U. 
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In order to define a likelihood energy funtion, we use not 
only gradient information but also magnitude values of 
chroma components. In general, well-exposed regions have 
larger gradient values and more vivid colors than over- or 
under-exposed regions. Based on such characteristics, the 
likelihood energy function is defined as 
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where Ni represents neighbors of i. Specifically, we use a 
10×10 block to define Ni. Si means the selected label at i 
while LSi(i) stands for the lightness value at i in the image of 
ISi. In the same manner, a and b represent chroma components 
in the CIELab domain. Since regular blocks cause errors 
around object boundaries, we consider lightness distance by 
taking only the samples whose lightness difference is smaller 
than Th in Vl. grad is a gradient value calculated using the 
Sobel filter, and wl means a weighting factor for likelihood 
energy.  

To increase the accuracy of our solution, we use prior 
information in which physical properties in neighborhood of 
images present some coherence and do not change abruptly 
except at boundaries. We regard the labeling set as piecewise 
constant; thus its prior model can be characterized by the 
multilevel logistic as 
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U(f) penalizes the labels which has different values than 4-
connected neighbors, N4. If Si is equal to Sj, δ (Si, Sj) returns 

one, otherwise it returns zero. wp means a weighting factor for 
prior energy.  

Belief propagation (BP) is used to infer the optimized S for 
IL and IH. BP is an iterative inference algorithm which 
propagates messages in the pre-defined grid. In Fig. 2, the 
circle vertices are hidden values to be estimated while the 
rectangular vertices are observed values.  

 

 
Fig. 2. Local message passing in image grids. 

 

Si possesses IL and IH states, receiving messages from four 
neighbors. Each message can be expressed as 
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where m and X denote the number of iteration and the pixels in 
the current direction among four directions, respectively. After 
20 iterations, we select the final set S which has the minimum 
energy states.  

IV. EXPERIMENTAL RESULT 
In order to evaluate the performance of the proposed 

algorithm, a series of experiments were performed. We 
compared the performance of the proposed algorithm to other 
state-of-the-art algorithms: Gelfand et al. [5] and Wang et al. 
[18]. Fig. 3 and Fig. 4 show the input image pair, Wang’s 
results, and our results for comparison. We used the same test 
images that Wang et al. used. Both methods are successful in 
revealing details; our algorithm provides more natural and 
vivid images while Wang’s algorithm generates excessive 
color in the red box as in Fig. 3. In the case of an extreme HDR 
in Fig. 4, our proposed method preserves texture details rather 
than Wang’s method. 

Further, our method demonstrates satisfactory subjective 
results for backlight compensation. Fig. 5 shows the 
experimental results of backlight compensation. We compared 
the proposed algorithm to Gelfand’s method. In the results, 
while the conventional method loses texture details of leaves, 
our method successfully reveals that of leaves and person with 



vivid colors. 

 

 
(a) input IL                                   (b) input IH 

 
(c) Result of Wang et al. [18]                        (d) Our result  

Fig. 3. Comparison of the results obtained by our method and by Wang’s 
method. 
 

 
(a) input IL                                   (b) input IH 

 
(c) Result of Wang et al. [18]                       (d) Our result  

Fig. 4. Comparison of the results in the extreme HDR case 
 

 
(a) input IL                                   (b) input IH 

 
(c) Result of Gelfand et al. [5]                (d) Our result  

Fig. 5. Backlight compensation 
 

V. CONCLUSION 

In this paper, we proposed an image fusion technique using 
an MRF model to enhance visual quality of images captured 
by ordinary digital cameras. With low and high exposed 
images, we adjust their luminance values and fuse them using 
global optimization. Experiment results show that the 
proposed algorithm generates more natural results than other 
state-of-the-art algorithms.  
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