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Abstract — The commercial RGB-D camera produces 

color images and their depth maps from a scene in real 
time. However, the active camera creates mixed depth 
data near the border of different objects, occasionally 
losing depth information of shiny and dark surfaces in the 
scene. Furthermore, noise is added to the depth map. In 
this paper, a new method is presented to resolve such 
mixed, lost, and noisy pixel problems of the RGB-D 
camera. In particular, mixed pixel areas are detected 
using common distance transform (CDT) values of color 
and depth pixels, and merged them to lost pixel regions. 
The merged regions are filled with neighboring depth 
information based on an edge-stopping convergence 
function; distance transform values of color edge pixels 
are used to form this function. In addition, a CDT-based 
joint multilateral filter (CDT-JMF) is used to remove 
noisy pixels. Experimental results show that the proposed 
method gives better performance than conventional hole 
filling methods and image filters1. 
 

Index Terms —RGB-D camera, depth image filter, distance 
transform, mixed pixel. 

I. INTRODUCTION 

Following the significant advances in depth information 
acquisition technologies over the last few years, high 
performance RGB-D cameras [1], [2], [3] have been 
developed recently. The RGB-D camera produces a 
sequence of a color image and its depth map pair of a natural 
scene in real time. In general, the active TOF camera 
provides more accurate depth information in textureless and 
texture-patterned scenes than passive depth estimation 
methods [4]. 

However, the quality of the depth map captured by the 
RGB-D camera is degraded by following three problems [5], 
[6]; 1) mixed pixels, 2) lost pixels, and 3) noisy pixels. Fig. 
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1(d) presents mixed pixels in the 3D scene reconstructed by 
the color image and its depth map of apple RGB-D data [7]. 
When an IR ray hits the boundary of an object, the portion 
of the ray is reflected by the front object and the other part 
by the background objects. Both reflections are received by 
an RGB-D camera and result in a mixed measurement [8]. 
Mixed pixels usually lie on near the border of different 
objects.  

Fig. 1(e) exhibits lost pixels in the 3D scene. The RGB-D 
camera has difficulty in obtaining depth data of shiny and 
dark surfaces, because IR rays reflected from these surfaces 
are weak or scattered. This phenomenon results in lost pixels 
in a depth map. Furthermore, since depth distortion by 
mixed pixels is too serious to employ in real applications, 
some RGB-D cameras provide a function to handle a part of 
mixed pixels as lost pixels. Thus, lost pixel recovery is an 
important task to be resolved.  

Lastly, optical noise is often added to a depth map. The 
noise mostly occurs due to non-linear response of IR sensors 
and different reflectivity of IR rays on the variation of object 
surface materials. As shown in Fig. 1(f), noisy pixels are 
usually observed inside of objects. 

Those inherent problems make it difficult to employ the 
active camera in various applications. Presently, the practical 
use of the RGB-D camera is limited in applications mainly 
involving foreground extraction [9] and motion tracking [1].  
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Fig. 1. Inherent problems of RGB-D cameras; (a) a color image, (b) a 
depth map of (a), (c) 3D scene reconstructed by (a) and (b), (d) mixed 
pixels, (e) lost pixels, and (f) noisy pixels. 

 
In this paper, a new method is proposed to resolve such 

mixed, lost, and noisy pixel problems. For dealing with mixed 
and lost pixels, mixed pixel areas are merged with lost pixel 
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regions based on common distance transform (CDT) [10] 
values; CDT is a new transform that measures pixel-modal 
similarity of color and depth pixels. It is assumed that mixed 
pixels are located on textured areas having high pixel-modal 
similarity. Then, the merged region is filled by neighboring 
depth information based on an edge-stopping convergence 
function; distance transform [19] values of color edge pixels 
are used to form this function.  

For noisy pixel removal, CDT-based joint multilateral 
filter (CDT-JMF) is proposed. CDT-JMF selects valid color 
data based on pixel-modal similarity; only the selected color 
data is used for depth map denoising. Due to the color data 
selection, noisy pixels can be minimized effectively while 
suppressing visual artifacts fabricated from useless color 
information. 

The main contributions of this paper are three-folds: (a) 
mixed pixel region detection based on CDT values, (b) lost 
pixel recovery using the DT-based edge-stopping convergence 
function, and (c) noisy pixel removal via CDT-JMF. This 
paper is organized as follows. In Section II, related works are 
introduced briefly. Section III explains the proposed method 
in detail. After providing experimental results in Section IV, it 
is concluded in Section V. 

II. RELATED WORK 

A. Hole Filling 

Hole filling has been a challenging task over the last two 
decades. Many hole filling algorithms have been developed. 
For instance, Telea’s image inpainting [11] is widely used to 
fill empty pixels in the field of computer vision and image 
processing. However, there are few works related to depth 
hole filling. A median filter [12] was introduced to fill the lost 
pixels. The method selects the exploitable depth pixels and 
carries out a median filter recursively. Recently, a joint 
bilateral filter (JBF)-based depth hole filling method [13] has 
been presented. The method recovers lost pixels using 
iterative JBF. 

B. Depth Map Denoising 

JBF [14] is often used to remove noisy pixels. Unlike a 
bilateral filter (BF) [15], JBF is based on color data instead of 
depth data. Formally, by considering color differences 
between the color value cx at a pixel position x and its 
neighbors {cn} at xn, the new depth value dx

new at x is 
computed by 
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where KS and KC are spatial and color weighting functions, 
S and C are smoothing parameters of KS and KC, 
respectively. If a Gaussian function is used to model KS, S 
becomes its standard deviation. W×W is the size of local 
analysis window and ||·|| is an operator to calculate 
Euclidian distance.  

If depth data are additionally considered by the depth 
value dx and its neighbors {dn} in (1), a joint multilateral 

filter (JMF) [16] is formulated as follows: 
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where KP is the depth weighting function and P is the 
smoothing parameter of KP. 

In literature, Petschnigg et al. [14] developed JBF to 
compute the edge-stopping function using the flash image and 
non-flash image. Kopf et al. [17] employed the concept of 
JBF to upsample image resolution from low to high. Yang et 
al. [18] also presented iterative JBF to increase spatial image 
resolution of a depth map. For depth map denoising, Cho et al. 
[16] and Kim et al. [6] presented JMF for generating dynamic 
3D human actors based on color and depth data. 

III. CDT-BASED DEPTH IMAGE FILTER 

A. Overall Framework 

Fig. 2 illustrates the overall block diagram of the proposed 
method. Blocks colored in yellow represent the flow to handle 
mixed and lost pixels. A process for minimizing noisy pixels 
is carried out through a group of blocks colored in blue.  

For mixed and lost pixel recovery, the proposed method is 
carried out as follows: 1) Two edge maps are extracted from a 
depth map and its color image, 2) Distance transform (DT) is 
performed on both edge maps, 3) CDT values are derived by 
comparing DT values of color and depth pixels, 4) Mixed 
pixel areas are detected based on the CDT values and merged 
with lost pixel regions; a depth hole area to be filled is defined, 
and 5) Hole filling is carried out using an edge-stopping 
convergence function that is formulated by DT values of color 
edge pixels. 

For noisy pixel removal, CDT-JMF is implemented as 
follows: 1) Scale factor wn

c of KC is calculated based on the 
CDT map, 2) KC is modified to KC′ by wn

c, 3) A weighting 
function is derived by combining KS, KC′, and KP, and 4) JMF 
is carried out based on the weighting function. 

B. Mixed and Lost Pixel Recovery 

Since mixed pixels are mismeasured depth data, mixed 
pixel areas and merged with lost pixel regions are removed. 
Lost pixel regions are easily detected by searching for zero 
depth areas in a depth map whereas mixed pixel regions are 
not. 

A CDT map is utilized to detect mixed pixel areas. The 
CDT map represents pixel-modal similarity between a depth 
pixel and its corresponding color pixel. Pixel modality is 
measured by the DT values of pixels. It is assumed that mixed 
pixels are mostly located on textured areas having high pixel-
modal similarity.  

Prior to DT, as shown in Fig. 3(a) and Fig. 3(b), the color 
edge map EC and the depth edge map ED are extracted from 
input color image and its depth map using an edge detection 
operator [20]. Note that isolated edges are ignored by applying 
a median filter to input images before edge extraction.  
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Fig. 2. Overall framework of 3D scene reconstruction using a RGB-D camera 
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Fig. 3. The procedure of mixed and lost pixel recovery; (a) color edge map of Fig. 1(a), (b) depth edge map of Fig. 1(b), (c) color DT map, (d) depth DT 
map, (e) CDT map, and (f) mixed pixel region, (g) modified depth map H, (h) selected color edges, (i) compensated color edges, (j) DT-based convergence 
function Z, (k) depth hole filling using Z, and (l) depth hole filling for unknown region U. 
 

For the DT, edge pixels in EC and ED are initially set to 
zero, whereas non-edge pixels are set to infinity. Formally, 
based on a-b distance transform (a-b DT), the DT value dti,j

k 
at iteration k is computed by 
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where a and b controls the strength of distance transform. 
Fig. 3(c) and Fig. 3(d) demonstrate the color DT map DTC 

and the depth DT map DTD, respectively. It is observed that 
DT values of pixels close to edges are assigned small 
numbers. In contrast, pixels far from edges have great DT 
values. These DT values indicate that the latter may belong to 
a homogenous area whereas the former to a textured area. 

Suppose that there are the depth DT value DTx
D at x and its 

corresponding color DT value DTx
C. If DTx

D is equal to or 
similar to DTx

C, they belong to either homogenous or textured 
areas. Otherwise, one pixel may be in a homogenous area 
while the other pixel is in a textured area. In this manner, 
pixel-modal similarity between a depth pixel and its color 
pixel is measured.  

Formally, a CDT value DTx
J at x in a CDT map DTJ is 

calculated by 
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where T1 and T2 are common homogenous and textured 
region detection threshold, respectively. Fig. 3(e) presents an 
example of the CDT map. 
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If DTx
J = 0, then x may be on common homogenous region 

of the depth map and the color image. In contrast, if 0< DTx
J 

< T2, x may be on common textured region and a mixed pixel. 
Therefore, mixed pixel area M is defined by  
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If Mx is equal to one, then x belongs to mixed pixel areas. 
Otherwise, x is present in non-mixed pixel regions. Fig. 3(f) 
shows an example of M. 

Then, M is merged with lost pixel regions. As shown in 
Fig. 3(g), the merged region is defined as a depth hole area, 
which will be filled by neighboring depth information. The 
depth map H including the depth hole area is represented by  
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For efficient depth hole filling with H, predicting lost 
depth edges is required. However, since there exists no depth 
edge information in the depth hole area, it is difficult to 
predict the potential edges. Color edges corresponding with 
the depth hole area are regarded as lost depth edges. These 
color edges are stored to an edge map EH, as shown in Fig. 
3(h).  

However, some isolated edge pixels in EH might cause 
undesirable depth hole filling results. In order to connect the 
isolated pixels, EH is expended by a dilation operation [23] 
and then the dilated edges are thinned [24]. The changed 
edge map E′H is shown in Fig. 3(i). 

An edge-stopping convergence function Z is considered. Z 
is estimated by the DT map DTH of E′H and color data. Z 
plays a role in terminating the pixel traversal during depth 
hole filling. Formally, Z is expressed by 
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where KS and KH are Gaussian functions with standard 
deviation S and H, respectively. dtx

h is the DT value in DTH at 
x and cx is the color value at x. Fig. 3(j) depicts the 
convergence function as an image. 
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Fig. 4. Depth hole filling; (a) an example of lost pixel situation, (b) the 
procedure of depth hole filling.  

Depth hole filling is carried out horizontally and 
vertically. Fig. 4 illustrates the procedure of horizontal 
depth hole filling based on Z. In Fig. 4(a), lost pixels are 
the black and white color pixels. Depth pixel d1 (green 
color) and d2 (yellow color) are the exploitable depth 
information to be used. Black color pixels have the lowest 
convergence value in each row. 

As shown in Fig. 4(b), the direction of the traverse is 
left to right. For instance, in the first row, from a starting 
point (1, 1), the traverse continues to (1, 8) with the lowest 
convergence value. Then, the traversed pixel position is 
filled by d1. Thereafter, the direction is changed to right-
to-left and the traverse continues until meeting the black 
color pixel. Then depth holes are filled by d2. In this 
manner, the depth holes are traversed and filled by d1 and 
d2. Fig. 3(k) shows the result of horizontal and vertical 
depth hole filling.  

Note that unknown region U in Fig. 4(b) occurs during 
the depth hole filling. Unfortunately, there is no 
exploitable depth information to recover the region. 
Simply, an average value of d1 and d2 is used to fill these 
lost pixels. Fig. 3(l) shows the final result by the proposed 
depth hole filling. 

C. Noisy Pixel Removal 

CDT-JMF is presented to remove noisy pixels with the aid 
of their color data. CDT-JMF selects valid color data based 
on the pixel-modal similarity; only the selected color data is 
used for noisy pixel removal.  

For instance, if the CDT map value is zero, the degree of 
pixel-modal similarity of a depth pixel and its color pixel is 
very high. i.e., the depth pixel is on a homogenous region in a 
depth map and its corresponding color pixel may be also a 
homogenous region in a color image. Therefore, the color 
data can be directly used for denoising.  

In contrast, if the CDT value is infinity, e.g., 255 for an 8-
bit gray-scaled image, the pixel modalities of both pixels are 
not identical. In this case, CDT-JMF only uses depth 
information. Otherwise, the degree of pixel-modal similarity 
is moderate. Then, the amount of color information to be 
used is determined by DTx

J. Basically, the greater DTx
J is, the 

less the proposed filter uses color information.  
Formally, CDT-JMF is represented by 
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where wn
c is a scale factor for KC and  wn

c ≥ 1. 
For KS, a box filter is used, which returns value 1 within 

W×W and value 0 outside it. The box filter is used for 
reducing the effect of the spatial term while increasing the 
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effect of the color term. The box filter is expressed by 
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For KC and KP, exponential functions are used as follows: 
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where C and P are smoothing parameters of KC and KP.  
wn

c is derived directly from DTn
J in the CDT map as 

follows: 
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where a controls the strength of DT, β indicates the 
maximum scale factor with β>1, and T1 is the threshold in (4). 
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Fig. 5. Relationship between wn
c and KC; (a) Scale factor wn

c based on 
DTn

J and (b) KC is changed by wn
c.  

 
Fig. 5(a) and Fig. 5(b) show the graphs of wn

c and the 
variation of KC with respect to wn

c. If DTn
J ≤ a, then wn

c = 1. 
In this case, the degree of pixel-modal similarity of a depth 
pixel and its color pixel is high. In (8), since ||cn-cx|| is 
multiplied by wn

c (= 1), KC is unchanged.  
On the other hand, if a < DTn

J < T1, then wn
c > 1. In this 

situation, the degree of pixel-modal similarity is not high but 
moderate. As shown in Fig. 5(b), wn

c is multiplied by ||cn-cx|| 
for moving KC toward zero. Hence, the effect of color data is 
reduced during depth map denoising. 

Fig. 6 illustrates the comparison of a Gaussian filter (GF), 
a BF, a JBF and the proposed CDT-based JMF. In a 5×5 
depth map (Fig. 6(b)), the interest pixel whose depth value is 
8 is located at (3, 3). It is assumed that the gray pixels belong 
to an object and that three noisy pixels are present in this 
depth map. Two noisy pixels at (2, 2) and (4, 1) have a value 
of 8. Although their pixel values (8) are similar to other depth 
values, the pixels are isolated and out of the object 
represented by depth value 8 or 9. In addition, the other pixel 
located at (4, 4) is a noisy pixel because its depth value 6 is 
different from object depth value 8 or 9. 

Fig. 6(a) shows a weighting scale according to color. In 
GF, KS (Fig. 6(e)) is only used as shown in Fig. 6(i). In BF, 
since the shape KP is so precipitous, the depth pixel at (4, 4) 
will be ignored. Therefore, BF uses the combination 
weighting function of KS and KP (Fig. 6(f)) for depth map 

denoising as shown in Fig. 6(j). In JBF, KC (Fig. 6(g)) is used 
instead of KP as shown in Fig. 6(k). In proposed CDT-based 
JMF, KC is changed to K′C by multiplying it by wn

c that is 
computed based on a CDT map (Fig. 6(d)). The result of the 
proposed filter is shown in Fig. 6(l). In this comparison, it is 
noticeable that the proposed filter only uses noiseless depth 
pixels to estimate a new depth value at (3, 3) whereas the 
other filters use the noisy pixels at (2, 2), (4, 1), and (4, 4). 
As a result, the new depth value at (3, 3) computed by the 
proposed method will be almost 9. 
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Fig. 6. Illustration of the comparison of GF, BF, JBF and proposed 
CDT-based JBF; (a) weighting scale, (b) depth map, (c) color image, (d) 
CDT map, (e) spatial weighting function KS, (f) range weighting function 
KP, (g) color weighting function KC, (h) K′C, (i) GF, (j) BF (KS×KP), (k) 
JBF (KS×KC), and (l) Proposed (KS×K′C×KP). 

IV. EXPERIMENTAL RESULT 

For evaluating the performance of the proposed depth hole 
filling method, the proposed method was tested with RGB-D 
datasets provided by [7]. Three datasets were selected; the 
proposed method was compared to four other methods: apple, 
kitchen, and meeting. 

The proposed method was compared to four other 
methods: median filtering [12], Telea’s inpainting [11], 
Navier-Stokes inpainting [21], and JBF-based methods [13]. 
For CDT map generation, T1 is set to 18 and T2 to 54 in (4). 
9-10 DT is used for pixel modality estimation. For median 
filtering, local analysis window size 5×5 was used. For 
inpainting methods, the range parameter was set to 1. In JBF 
method, S = 2 and C = 0.1, respectively. 

Fig. 7, Fig. 8, and Fig. 9 show the result of apple, kitchen, 
and meeting by the comparative methods. As observed from 
the result of apple, the proposed method (Fig. 7(g) and Fig. 
7(h)) leads to better depth information near an apple and an 
plate than median filtering (Fig. 7(c)), image inpainting (Fig. 
7(d)  and Fig. 7(e)), and JBF method (Fig. 7(f)).  

In addition, as shown in Fig. 8, the depth data of the hat in 
kitchen is better recovered by the proposed method than the 
other methods. Furthermore, the result of meeting shows an 
apparent difference between the proposed method and the 
others in recovering depth data of the part to a chair. 
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(a) Color image (b) Input depth map (d) Telea’s inpainting

(g) Proposed depth-hole filling (h) Proposed method + CDT-JBF

(c) Median

(e) Navier-Stokes image inpainting (f) JBF method  
Fig. 7. Result of apple RGB-D image. 

(a) Color image (b) Input depth map (d) Telea’s inpainting

(g) Proposed depth-hole filling (h) Proposed method + CDT-JBF

(c) Median

(e) Navier-Stokes image inpainting (f) JBF method  
Fig. 8. Result of kitchen RGB-D image. 

(a) Color image (b) Input depth map (d) Telea’s inpainting

(g) Proposed depth-hole filling (h) Proposed method + CDT-JBF

(c) Median

(e) Navier-Stokes image inpainting (f) JBF method  
Fig. 9. Result of meeting RGB-D image. 
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Fig. 10. Result of 3D scene reconstruction; (Row 1) the original 3D scenes and (Row 2) Recovered 3D scenes by the proposed method 

 

(b) (c) (d) (e)(a) (f) (g)
 

Fig. 11. Result of midd1 and teddy; (a) color image and a part of it, (b) ground truth depth map and a part of it, (c) a part of artificially-generated noisy 
depth map and its difference map with (b), (d) result of BF and its difference map with (b), (e) result of JBF and its difference map with (b), (f) result of 
JMF and its difference map with (b), (g) result of the proposed method and its difference map with (b). 

 
Fig. 10 shows the result of 3D scene reconstruction using a 

depth image-based modeling method [22]. The first row of Fig. 10 
shows the original 3D scene generated by a raw depth map and its 
color image. The second row shows the recovered 3D scene 
generated by the enhanced depth map via the proposed depth hole 
filling. It is observed that the lost pixels marked by rectangles are 
restored and mixed pixels marked by circles are minimized.  

For assessing the improvement of the depth accuracy of the 
proposed CDT-JMF, it was tested with ground truth image sets 
provided from [4]. Ten datasets were selected; baby1, bowling, 
cloth, flowerpots, lampshade, midd1, monopoly, rocks1, teddy, 

and wood1. For the experiment, Gaussian noise (standard 
deviation σ=20) is artificially added to the ground truth data to 
generate noisy depth maps. 

The values of some parameters needed for CDT-JMF are set as 
follows: β = 1.5 in (11), W = 11 in (8), P = 0.1 and C = 0.1 in (10). 
Peak signal to noise ratio (PSNR) measurement based on ground 
truth data was employed for an objective evaluation of depth 
quality improvements. The proposed method was compared to 
bilateral filter (BF) [15], JBF [17], and JMF [16]. For BF, the 
parameter S is set to 2 and P is set to 0.1. For JBF and JMF, S = 2, 
P = 0.1, and C = 0.1. 



688  IEEE Transactions on Consumer Electronics, Vol. 59, No. 3, August 2013 

Table 1 shows the average PSNR comparison of the 
comparative methods. The average PSNRs are 35.61 dB, 
32.18 dB, 36.33 dB, and 36.77 dB for BF, JBF, JMF and 
the proposed CDT-JMF, respectively. This result 
indicates that the proposed method outperforms other 
comparative methods by 1.16 dB, 4.59 dB, and 0.44 dB 
on average. 

 
TABLE I 

PSNR COMPARISON (UNIT: dB) 

Test data BF JBF JMF Proposed 

baby1 31.83 31.83 36.84 37.05 

bowling 36.11 34.33 36.67 36.89 

cloth 39.40 38.37 38.04 39.21 

flowerpots 33.88 27.98 34.73 34.59 

lampshade 34.91 31.95 35.16 36.14 

midd1 34.88 31.08 35.23 35.32 

monopoly 35.97 33.17 36.60 37.02 

rocks1 34.88 30.57 35.36 35.57 

teddy 37.35 28.87 38.37 38.54 

wood1 36.91 33.14 36.27 37.35 

Average 35.61 32.13 36.33 36.77 

 

(a)

(b)

(c)
 

Fig. 12. Result of captured RGB-D images; (a) captured color images, (b) 
captured depth maps, and (c) output depth maps by the proposed 
method. 

 
Fig. 11 presents the result of midd1 and teddy. As shown 

in Fig. 11(d), BF blurs depth information on object 
boundaries more than other methods. In the case of JBF and 

JMF, some visual artifacts are observed in homogeneous 
areas. Those artifacts are occurred by transferring texture 
detail in the color image to homogeneous areas in the 
depth map. On the other hand, when the difference maps 
of BF, JBF, JMF are compared with the proposed method 
one, it is noticeable that the proposed method refines the 
depth data on object boundaries while suppressing visual 
artifacts of JBF and JMF. 

Fig. 12 shows the result of color images and depth maps 
captured by an RGB-D camera [1]. As shown in Fig. 12(a) 
and Fig. 12(b), the captured scene is more complicated 
than apple, kitchen, and meeting. The proposed method 
provides restored depth data for objects in the scene, but 
the recovery of large depth hole areas, such as the black 
color TV, still remains problematic. 

V.  CONCLUSION 

In this paper, a new method was presented to resolve 
inherent mixed, lost, and noisy pixel problems of time-of-
flight RGB-D cameras. A common distance transform 
(CDT) map was used to detect the mixed pixel region and 
CDT-based joint multilateral filter (CDT-JMF) was 
developed to minimize noisy pixels. For mixed and lost 
pixel recovery, a convergence function based on distance 
transform was presented. Experimental results show that 
the proposed depth hole filling produces better refined 
depth information than median filtering, image inpainting, 
and JBF methods. In addition, in terms of noisy pixel 
removal, based on ten test depth maps, PSNR gains of the 
proposed method are approximately 1.16 dB, 4.57 dB, and 
0.44 dB greater than bilateral filter, JBF, and JMF. 
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