
J. Vis. Commun. Image R. 25 (2014) 1595–1603
Contents lists available at ScienceDirect

J. Vis. Commun. Image R.

journal homepage: www.elsevier .com/ locate/ jvc i
Discontinuity preserving disparity estimation with occlusion handling
http://dx.doi.org/10.1016/j.jvcir.2014.07.005
1047-3203/� 2014 Elsevier Inc. All rights reserved.

⇑ Corresponding author. Tel.: +82 62 715 2258; fax: +82 62 715 3164.
E-mail addresses: jws@gist.ac.kr (W.-S. Jang), hoyo@gist.ac.kr (Y.-S. Ho).
URL: http://vclab.gist.ac.kr (W.-S. Jang).
Woo-Seok Jang ⇑, Yo-Sung Ho
Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea

a r t i c l e i n f o a b s t r a c t
Article history:
Received 28 October 2013
Accepted 23 July 2014
Available online 1 August 2014

Keywords:
Distance transform
Occlusion handling
Stereo vision
Energy optimization
Depth image-based rendering
Depth discontinuity
Hierarchical structure
3D content
In this paper, we propose a stereo matching algorithm based on distance transform to generate high-
quality disparity maps with occlusion handling. In general, pixel intensities around object edges are
smeared due to mixed values located between the object and its background. This leads to problems
when identifying discontinuous disparities. In order to handle these problems, we present an edge con-
trol function according to distance transform values. Meanwhile, occluded regions occur, i.e., some por-
tions are visible only in one image. An energy function is designed to detect such regions considering
warping, cross check, and luminance difference constraints. Consequently, we replace the disparity in
the occluded region with the one chosen from its neighboring disparities in the non-occluded region
based on color and spatial correlations. In particular, the occlusion hole is filled according to region types.
Experimental results show that the proposed method outperforms conventional stereo matching algo-
rithms with occlusion handling.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Depth images represent distance information between the cam-
era and objects in the captured scene. The depth map is usually
provided with its corresponding color image as a pair, often called
video-plus-depth [1]. Recently, efficient image generation methods
for arbitrary view positions have been vital due to the develop-
ment of multi-view display devices and three-dimensional (3D)
contents. In particular, depth image-based rendering (DIBR) is
one of the most widely used methods which create a virtually-syn-
thesized image by projecting color and depth data onto a target-
view image plane [2]. The performance of DIBR mainly depends
on the quality of depth information.

In general, active sensor-based and passive sensor-based meth-
ods exist for measuring depth information from a natural scene.
The former employs physical sensors, e.g., infrared ray (IR) sensor,
to directly acquire depth data based on the principles of time-of-
flight [3]. Usually, the active sensor is more effective in producing
high quality depth images than the passive sensor.

However, active sensors suffer from three inherent problems.
First, depth data acquisition is difficult if the object is far from
the sensor; off-the-shelf sensors allow measuring distances of
within 10 m. Second, they are not applicable to outdoor environ-
ments. Finally, they produce low-resolution depth images, i.e., less
than 640 � 480, due to challenging real-time distance measuring
systems. Such inherent problems make active sensors not practical
for various applications. In the industry, their usage is limited to
applications mainly involving foreground extraction [4] and
motion tracking [5] in indoor environment.

On the other hand, passive sensor-based methods indirectly
estimate depth information from 2D images captured by cameras.
Such methods can measure depth information of all objects in the
captured scene unlike active sensor-based methods. In addition,
indirect depth sensing of passive methods is applicable to both
indoor and outdoor environments. Another advantage is that the
depth image resolution depends on camera resolution, which is
not limited to low resolution as in the active sensor. Due to such
benefits, the ISO/IEC JTC1/SC29/WG11 Moving Picture Experts
Group (MPEG) has utilized passive depth sensing rather than active
depth sensing in the 3D video system standardization [6].

Stereo matching is one of the most widely used passive sensor-
based methods. This process extracts 3D information from left and
right images captured by a stereoscopic camera. In stereo match-
ing, 3D information is calculated by examining the different per-
spective distortions of objects in the scene of two images.
Consequently, in stereo normal case, the different image positions
of corresponding image points called disparity is directly related to
depth information based on camera parameters.

Over the past several decades, a variety of stereo matching
methods have been developed to obtain high-quality disparity
maps. However, accurate measurement of depth information from
a natural scene still remains problematic due to difficult corre-
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spondence matching in three types of regions: textureless, discon-
tinuous depth, and occluded areas [7]. First, since color data of the
textureless region in left and right images are so similar each other
in a wide range, correspondence matching often fails because of its
ambiguousness. Second, in case of the depth discontinuous region,
i.e., the edge region, smeared color values exist, which leads to
ineffective correspondence matching. Lastly, in the occluded
region, some pixels may appear in the left image but not in the
right image; accordingly, there is no corresponding pixel in the
right image.

In this paper, we propose a distance transform-based disparity
estimation method with occlusion handling to solve the important
problems of stereo matching. Distance transform (DT) [8] calcu-
lates the distance to the closest edge for each pixel of an input
image. DT values of left and right images control the luminance
weighting term for better correspondence matching in edge
regions. In addition, an energy function is modeled with three con-
straints to detect occluded regions. Occlusion hole filling based on
color and spatial weighting functions is presented as well. In par-
ticular, the proposed hole filling method utilizes different shape
of referred windows according to occlusion types, i.e., leftmost
occlusion and inner occlusion.

The contributions of our work are as follows; (a) DT-based ste-
reo matching is proposed to increase the accuracy of disparities in
the edge region, (b) a new occlusion detection function is designed
based on three constraints, and (c) occlusion hole filling is per-
formed adaptively according to occlusion types.

The remainder of this paper is organized as follows. In Section 2,
we state the problem in question and briefly introduce the related
works. Then, Section 3 presents the proposed method in detail.
Section 4 discusses the experimental results followed by conclu-
sions in Section 5.
2. Problem statement

2.1. Occlusion and edge pixel problems

Over the past several decades, occlusion handling has been a
challenging task in stereo matching. For left disparity map estima-
tion, the occlusion region represents certain parts of an object that
are visible in the left image but not in the right image, and vice
versa. Fig. 1(a) illustrates the occlusion problem in left disparity
map generation case. The red1-marked region appears in the left
image only, which means occlusion. The occlusion problem leads
to failure of finding corresponding pixels in the right image.

Accurate measurement of depth information in the edge region
is important in stereo matching, because depth data of object bor-
ders are usually distinguishable. However, as shown in Fig. 1(b),
pixels around edges in the left and right images have smeared color
values. This affects measuring of discontinuous disparities in the
associated area. For reduction of ambiguity in discontinuous
regions, several approaches employ variable window sizes or adap-
tive window shapes via segmentation or pixel-wise similarity mea-
sures. The proposed method produces similar effects compared
with the approaches using variable window size or adaptive win-
dow shapes. While the classical approaches alter the window to
determine the pixels, the proposed approach keeps the window
and controls the influence of pixels within the regular scope. The
proposed method can reduce the effect of inaccurate pixel determi-
nation and reflect enough edge influence by distance transform.

In the approaches using segmentation, the influence on the seg-
mentation quality is greater than the algorithm itself. On the other
1 For interpretation of color in Figs. 1 and 5–7, the reader is referred to the web
version of this article.
hand, the proposed method can simply calculate the disparity map
without prior work such as segmentation. Pixel-wise similarity
measure enables the acquisition of scene details. However, this
produces poor results in textureless areas and is very sensitive to
image noise.

2.2. Previous work

In general, stereo matching can be categorized into local and
global methods. Local methods are processed by windows based
on correlation where the disparity is assumed to be equal for all
pixels within the correlation window [9]. Nevertheless, at discon-
tinuities, this assumption generates blurred object borders and
removes small details depending on the size of the correlation win-
dow. Thus, such an assumption should be disregarded for depth
discontinuities.

In global methods [10], the task of computing disparities is cast
as an energy minimization problem. Typically, an energy function
for obtaining a disparity map D is formulated as

EðDÞ ¼ EDðDÞ þ kEsðDÞ; ð1Þ

where ED is a data term which measures the pixel similarity and ES

is called the smoothness term which penalizes disparity variations.
Belief propagation [11], dynamic programming [12] and graph cuts
[13,14] are well-known methods for solving this energy function.
Generally, global methods are computationally complex even for
low resolution images with a small disparity range. Thus, they are
not practical. Recently, several methods have been introduced to
reduce the complexity of global methods [15–19]. However, the
performance of the algorithms considering the practical use is
insufficient. Thus, further refinement process is necessary.

In regards to occlusion handing, Kolmogorov and Zabih [14]
have proposed an additional occlusion term for the energy function
to penalize occluded pixels. Then, the energy function is optimized
via graph cuts to compute final disparities. The drawback is that
the penalty of the occlusion term depends on only the uniqueness
constraint. Liu et al. [20] have presented a two-step local method;
the initial matching cost is computed using contrast contest histo-
gram descriptors. Consecutively, disparity estimation is performed
via two-pass weighted cost aggregation considering segmentation-
based adaptive support weights. In this algorithm, disparity simi-
larities of neighboring pixels which prevent disparity variations
are inapplicable to localized results. Ben-Ari and Sochen [21] have
introduced a variational approach to find corresponding points.
Two coupled energy functions are included for half-occlusion han-
dling and discontinuity map generation. Since optimization is
repeated, high complexity is induced. Even though Jang’s method
[22] generates high quality disparity maps, disparity information
in edge regions are not estimated accurately due to its ambiguity.
Furthermore, some errors in the non-occlusion region may propa-
gate to the occlusion region during the disparity assignment
process.
3. Proposed method

3.1. Overall framework

The proposed method is initially motivated by Yang’s work [17]
based on hierarchical belief propagation. Due to the hierarchical
structure, the previous work computes disparities accurately in
the textureless region. Execution speed-wise, their work is one of
the most effective global algorithms. For practical use, we adopt
this method. However, the quality is insufficient, especially in
regards to occlusion and depth discontinuity due to their ambigu-
ity. Thus, we sufficiently refine the results. Based on Yang’s work,
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Fig. 1. Occlusion and smeared edge pixel problem. (a) Occlusion region is only visible in one image, causing mismatching. (b) Smeared pixels near the edge affect the
discontinuity measure.
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the proposed method uses distance transform to improve the dis-
parity quality in the edge region. Furthermore, the proposed
method includes occlusion handling.

Fig. 2 represents the overall framework of the proposed dis-
tance transform-based stereo matching with occlusion handling.
For initial left and right disparity map generation, the proposed
method is implemented as it follows: (1) distance transform (DT)
including edge extraction is performed, (2) DT-based weighting
function is computed, (3) luminance weighting function is calcu-
lated, (4) block-based stereo matching is carried out based on such
weighting functions, and (5) disparity enhancement is performed.

For the occlusion handling process, (1) occluded regions are
detected by cross check, warping, and luminance difference con-
straints, (2) color and spatial weighting functions are calculated,
and (3) vacant pixels in the occluded region are filled by neighbor-
ing disparities chosen by the two weighting functions.
3.2. Distance transform-based stereo matching

In computer vision, DT is usually beneficial in tracing human
motions, for example hand tracking [23,24]. In this paper, we apply
this to disparity estimation. Prior to the distance transform, the
Canny edge operator [25] is used for extraction of color edge
map from the image. The application of Canny edge operator to
the input image may generate excessive edge information. Unnec-
essary isolated edge points may obstruct the purpose of improving
the depth accuracy in discontinuity regions. In order to remove
these, we apply a median filter to the original image prior to edge
detection.

In order to obtain DT map, DT values in edge pixels are set to
zero, while infinity is assigned to non-edge pixels, initially. Then,
based on a–b distance transform (a–b DT), the DT value rk

i ,j at iter-
ation k is computed by

rk
i;j ¼min

rk�1
i�1;j�1 þ b rk�1

i�1;j þ a rk�1
i�1;jþ1 þ b

rk�1
i;j�1 þ a rk�1

i;j rk�1
i;jþ1 þ a

rk�1
iþ1;j�1 þ b rk�1

iþ1;j þ a rk�1
iþ1;jþ1 þ b

2
664

3
775; ð2Þ

where a and b control the strength of distance transform [26]. Fig. 3
illustrates the DT map generation procedure using 9–10 DT. As
shown in Fig. 3, if the DT value of a pixel is close to zero, the pixel
may belong to a textured area, i.e., the edge region. On the other
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hand, in case of a large DT value, i.e., the pixel is far from the edges,
it belongs to a homogeneous region which is textureless.

In order to find corresponding points between left and right
images, stereo matching defines an energy function composed of
a data term and a smoothness term. When the energy function
has the minimum value via energy optimization techniques such
as graph cuts [13] and belief propagation [11], the optimal dispar-
ity value is determined.

Suppose there exists a left image IL and a right image IR. Let s
and t denote coordinates of pixels. s is the center pixel of the local
window N(s) and t is the neighboring pixel of s within the window
where t 2 N(s). The goal of stereo matching is to find the disparity
ds of s. The energy function is formulated as

EðdÞ ¼
X

s

DsðdsÞ þ
X

s;t2NðsÞ
Ss;tðds;dtÞ; ð3Þ

where Ds(�) indicates the data term of s and Ss,t(�) represents the
smoothness term between s and t.

In this paper, for matching cost calculation, we employ the
weighted absolute luminance difference between two blocks as
the data term. In particular, the distance transform value dtt at t
controls the matching cost for better disparity estimation in the
edge region. The proposed matching cost is defined by

DsðdsÞ ¼
P

t2NðsÞWs;tðdttÞ � Fs;tðdsÞP
t2NðsÞWs;tðdttÞ

; ð4Þ

where Wt is the weighting function at t considering its DT value dtt,
and Fs,t(�) is the absolute luminance difference at t with respect to s.
In case of left disparity map generation, Fs,t is represented by

Fs;tðdsÞ ¼minðjILðxs; ysÞ � IRðxt þ ds; ytÞj; TdÞ; ð5Þ

where (xs,ys) and (xt,yt) are coordinates of s and t, respectively. Td

controls the data cost limit. The proposed DT-based weighting func-
tion Wt is computed by

Ws;tðdttÞ ¼ f ðdttÞ � gðjIL;s � IL;t jÞ; ð6Þ

where f(�) is the DT function and g is the luminance weighting func-
tion. |�| is the operator for calculating Euclidean distance between
the luminance value IL,s at s and the luminance value IL,t at t in
the left image. In this work, f and g are modeled as
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f ðdttÞ ¼ 1� e
�

dt2
t

2rf ; g jIL;s � IL;tjð Þ ¼ e�
IL;s�IL;tj j2

2rg ; ð7Þ

where rf and rg are smoothing parameters of f and g, respectively.
rf and rg are usually defined as the standard deviation of the Gauss-
ian function.

In (6), the DT function f is inversely proportional to the DT value
dtt, and 0 6 f 6 1. Since the smeared edge pixel problem makes cor-
respondence searching difficult, f imposes small weighting values
on them, i.e., less than 0.5. Fig. 4 exhibits the DT function.
Fig. 4(a) shows the left image of Teddy and a magnified part.
Fig. 4(b) shows its edge information and Fig. 4(c) represents the
associated DT function. As shown in Fig. 4(c), the closer the pixel
is located to edges, the smaller the DT weighting value is assigned
to the pixel to reduce the smeared edge pixel problem.

The smoothness term Ss,t is based on the degree of difference
among disparities of neighboring pixels. Ss,t is represented by

Ss;tðds;dtÞ ¼minðkjds � dt j; TsÞ; ð8Þ

where Ts is the constant controlling to deny cost increase. The
smoothness strength k is a scalar constant. We employ the smooth-
ness term in Yang’s work [17].

3.3. Disparity map refinement considering occlusion and post-
processing

Prior to final disparity generation, occluded regions should be
extracted. For occlusion detection, we present three constraints:
warping constraint, cross check constraint, and luminance differ-
ence constraint. In case that we find occluded regions in the left
disparity map with the warping constraint, all pixels in the left
image are projected to the right image coordinates using the left
disparity map.

For occlusion determination, we introduce a right visiting map.
If a projected pixel from the left image is matched with the coordi-
nate of the right visiting map as a manner of one-to-one mapping,
the left disparity is regarded as a reliable; its location does not
belong to occluded regions. In contrast, if more than two projected
pixels are assigned to the same coordinate of the right visiting map
as a manner of many-to-one mapping, the corresponding disparity
locations are assumed to be belonged to occluded regions. Fig. 5
illustrates the warping constraint. Since the number of visiting
counts in the right visiting map is greater than one, the blue-
marked pixels are regarded as candidates of occluded pixels.
(a) (b)

Fig. 4. DT function. (a) Color data; (b) ed
For the warping constraint, we define an energy function Ew to
cover aforementioned characteristics by

EwðDLÞ ¼
X

s

wwjos �WLðs;DLÞj; ð9Þ

where WL is the warping constraint map, os is the hypothesized
occlusion value, and ww is the weighting factor. WL(s,DL) is a binary
map constructed by the warping constraint. Multiple matching pix-
els in the left image are set to ‘1’. If pixel s is assumed to be an
occluded pixel, the occlusion value os is set to ‘1’.

Second, the cross check constraint evaluates the mutual consis-
tency of both disparity maps. If a particular pixel in the image is
not an occluded pixel, the disparity values from both maps should
be consistent. The corresponding points in both images have the
same disparity value. The energy function Ec for the cross check
constraint is calculated by

EcðDL;DRÞ ¼
X

s

jos � CLðs; DL;DRÞj; ð10Þ

where CL indicates the cross check constraint map.

CL ¼ 0; if DLðxsÞ ¼ DRðxs � DLðxsÞÞ
CL ¼ 1; otherwise

� �
: ð11Þ

DL and DR are the left and right disparity maps respectively. xs is a
pixel in the left image. If the left disparity is equal to its right dispar-
ity at the corresponding pixel coordinate, CL is set to zero in (11).
When CL = 1, the possibility of its disparity location being included
in occluded regions is high.

Lastly, the luminance difference constraint is defined by (12).
We use the luminance difference as the matching cost. This comes
from the assumption that the large difference of luminance gener-
ates wrong matching even if a particular pixel is regarded as a vis-
ible pixel by warping and cross check constraint.

DcdðsÞ ¼ jILðxsÞ � IRðxs � DLðxsÞÞj: ð12Þ

The final energy function for occlusion detection is defined as

EOD ¼
X

x

½ð1� osÞ � DcdðsÞ þ koos� þ kwEwðDLÞ þ kxEcðDL;DRÞ

þ
X

s

X
s;t2NðsÞ

ksjos � ot j: ð13Þ

koos is the cost of penalty for occlusion labeling. This is necessary to
balance the luminance difference constraint term. It prevents the
0

255

Weighting 
Scale(c)

ge data; and (c) DT weighting value.
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whole occlusion map from being labeled as occlusion. In (13), the
last term represents the smoothness term for the energy function
of occlusion detection and it uses Sum of Absolute Difference
(SAD) among the neighboring pixels of pixel s. This final function
is optimized by belief propagation [17].

After occlusion detection, the reasonable disparity value should
be assigned to the occluded pixel. Since occlusion is only visible in
one image, it is impossible to determine the accurate disparity
value by means of conventional stereo matching. The vacant dis-
parity of a pixel in the occluded region can be filled with the dis-
parities of its four neighboring pixels with the assumption that
disparity values in occluded pixels are similar to those of near
non-occluded pixels. The proposed method propagates the dispar-
ity values of non-occluded pixels to occluded pixels. First, we clas-
sify occlusion regions into leftmost and inner occlusion parts. Fig. 6
shows the left image and the corresponding occlusion map. The red
part in Fig. 6(b) is the leftmost and the rest of the occlusion is the
inner part.

The reason why occlusion in the inner part is occurred is as fol-
lows. In the right image, the object occludes the background which
exists at the left-side of the object in the left image. Thus, the rea-
sonable disparity value in the inner occlusion can be obtained from
the left-side background of the occlusion.

In order to assign the proper data to inner occlusion, a potential
energy function is defined. Let L(s) be the neighboring pixels whose
distance from occluded pixel s is smaller than the predefined dis-
tance and C = {s, t| horizontal coordinate of s P horizontal coordi-
nate of t, t 2 L(s)} be the set of all nearby pixels which affect
pixel s. B = {s, t| ds – dt, t 2 C} and ot is the occlusion value from
the obtained occlusion map. Formally, the potential energy func-
tion for disparity assignment is defined in (13).

EDAðs;dsÞ ¼
X

t2CnB
ð1� otÞ

1
distðs; tÞ exp � diffs;t

r2
da

� �
; ð14Þ
Fig. 6. Two kinds of occlusion. (a) Co
where dist(s, t) is the spatial distance and diffs,t is the color difference
between occluded pixel s and visible pixel t. The disparity value,
which has the maximum value of (14), is determined as the dispar-
ity for the pixel s. This process assigns the optimal disparity by find-
ing the similar region to the occlusion part according to the
weighting of distance.

The occlusion handling process in the inner part works at only
occluded pixels which are near visible pixels. Thus, it completely
handles thin or small occlusion. However, wide and large occlusion
is processed at only near visible pixels. In order to solve this prob-
lem, we apply the potential energy function for occlusion handling
repeatedly until all occluded pixels are removed.

Occlusion in the leftmost part is generated due to the non-exis-
tence of this occlusion region in the right image. Thus, it is useless
to estimate the disparity using left-side neighboring region of
lor image and (b) occlusion map.
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occlusion in the leftmost part. In addition, disparity extension of
the leftmost visible pixels to this occlusion part for each horizontal
line is also risky [22].

In order to handle the leftmost part, we search the analogous
region to current pixel at neighboring of the leftmost occlusion.
Mask shape for search is different from inner occlusion. Fig. 7
shows the mask shape of inner and leftmost occlusion, respec-
tively. The red pixel is the current pixel in the occlusion region
and the others are the pixels that affect disparity assignment of
the current pixel.

The measure of likeness for finding the analogous region in the
leftmost occlusion is defined by (15) according to the distances and
color differences from neighbor pixels. The disparity value of the
most analogous region is selected as optimal disparity value of
the current occlusion.
Fig. 8. Comparison of initial work results. (a) CSBP in Teddy; (b) DT-based method in Tedd
ground truth in Cones.

Fig. 9. Comparison of results. (a) GC + occ; (b) CCH + SegAggr; (c) Va
f ðs; tÞ ¼ argmax
dt

ð1� otÞ
1

distðs; tÞ exp � diffs;t

r2
da

� �
: ð15Þ

Some papers consider occlusion types [27,28]. However, they
do not consider the mask shape according to the occlusion charac-
teristics. In the leftmost part, the disparity values of the leftmost
visible pixels are simply extended to the leftmost occlusion part
for each horizontal line. In the inner part, small and large occlusion
regions are handled separately.

After occlusion handling, we enhance the disparity map based
on Yang’s work as a post-processing. For disparity enhancement,
five candidate pixels t1, t2, t3, t4, t5 are selected in the local window;
t1, t2, t3, t4, t5 are the left, right, center, top and bottom pixels in the
local window. When s is (xs,ys) coordinate, the candidates are
defined by
y; (c) ground truth in Teddy; (d) CSBP in Cones; (e) DT-based method in Cones; and (f)

rMSOH; (d) Jang’s; (e) proposed method; and (f) ground truth.



Table 1
Objective evaluation of the proposed method, comparing the percentage of bad pixels in the non-occluded region (nonocc), all regions (all), and regions near depth discontinuities
(disc). The subscripts of error rate are the ranking among the presented methods.

Algorithm CSBP [17] GC + occ [14] CCH + SegAggr [20] VarMSOH [21] Jang’s method [22] Proposed method

Tsukuba nonocc 2.005 1.191 1.744 3.976 1.422 1.673

all 4.175 2.011 2.112 5.236 2.304 2.253

disc 10.505 6.241 9.233 14.906 7.942 9.354

Venus nonocc 1.485 1.646 0.412 0.281 0.914 0.433

all 3.116 2.195 0.943 0.762 1.544 0.721

disc 17.706 6.754 3.973 3.781 12.715 3.932

Teddy nonocc 11.105 11.206 8.083 9.344 6.341 7.192

all 20.206 17.405 14.33 14.304 13.622 12.331

disc 27.506 19.803 19.804 20.005 17.591 19.482

Cones nonocc 5.985 5.363 7.076 4.141 4.962 5.514

all 16.506 12.402 12.905 9.911 12.704 12.493

disc 16.005 13.002 16.306 11.401 14.443 15.124

Average bad pixels 11.346 8.275 8.073 8.174 8.042 7.541

Average ranking 5.426 3.254 3.675 3.173 2.832 2.671
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t1 : ðxs�1;ysÞ;t2 : ðxsþ1;ysÞ;t3 : ðxs;ysÞ;t4 : ðxs;ys�1Þ;t5 : ðxs;ysþ1Þ:
ð16Þ

Each candidate has its own cost based on spatial and color
weighting functions u and w. Formally, the cost Cs,t at t with
respect to s is calculated by

Cs;t ¼ uðjs� tjÞ � wðjds � dtjÞ; ð17Þ

where ru and rw are smoothing parameters of u and w,
respectively.

Then, we seek tx that has the minimum cost among the five can-
didate set Q = {t1, t2, t3, t4, t5}. tx is represented by

tx : argminfCs;t1 ;Cs;t2 ;Cs;t3 ;Cs;t4 ;Cs;t5g: ð18Þ

Finally, s is assigned by the disparity at tx.
4. Experimental results

In order to evaluate the performance of the proposed method,
we tested with four stereo images sets with different image size.
These reference test data are Tsukuba, Venus, Teddy, and Cones pro-
vided by Middlebury Stereo [29].

In the experiment, a and b values for distance transform are set
to 9 and 10, respectively. The larger the strength of DT, the lesser
the effect of the edge. Our contribution is to reduce the effect of
smeared pixels near the edges for accurate disparity estimation.
Thus, we use large strength. For DT-based weighting function,
smoothing parameters rf and rg in (7) are set to 0.3 and 0.2,
respectively. For the proposed occlusion detection, each parameter
is the weighting of each term in (13). However, the luminance dif-
ference constraint term is not weighted. Thus, numerical values of
parameters are determined to achieve similar impact by each
parameter according to the luminance difference constraint term.
ko, kw, kc, and ks in (13) are set to 7.5, 12, 12, and 4.2 to balance each
Table 2
Performance comparison in occlusion. The percentage of bad pixels in the occluded region

Algorithm CSBP [17] GC + occ [14] CCH + SegAggr [2

Tsukuba 86.366 33.043 15.851

Venus 89.676 31.094 28.933

Teddy 96.056 67.084 64.793

Cones 94.236 73.115 63.452

Average bad pixels 91.586 51.084 43.262

Average ranking 6.006 4.004 2.252
term of the energy function. For the occlusion hole filling, rda in
(14) and (15) is set to 7.

Fig. 8 illustrates the visual comparison of Yang’s work [17] with
the initial disparity map using the proposed DT-based stereo
matching. The result of Fig. 8 demonstrates that the proposed ini-
tial disparity generation improves the quality in edge regions. The
final results of our method adding occlusion handling are pre-
sented in Fig. 9. Fig. 9 also includes the results of the above other
methods including occlusion handling and ground truth disparity
maps.

In the proposed method, we adopted Yang’s work which gener-
ates unsatisfactory disparity quality, but extremely fast. We did
not apply iterative process for occlusion handling. Thus, the com-
putational complexity of the proposed method depends on that
of Yang’s work which is one of the fastest algorithms among global
methods. In fact, the proposed method for all stereo pair runs in
less than five seconds on a 2.67 GHz Intel Core machine.

In order to evaluate our final disparity map, we compare our
proposed method with other methods which have good perfor-
mance with occlusion handling. Table 1 shows the objective eval-
uation which measures the percentages of bad matching pixels
[29]. This measure is computed for three subsets of the image:
non-occluded, whole, and discontinuity regions, denoted as ‘‘non-
occ’’, ‘‘all’’, and ‘‘disc’’, respectively. When the absolute disparity
error is greater than one pixel, the pixel is regarded as a bad pixel.
The subscript of error rate in Table 1 represents rankings among
the presented methods. These results indicate that the proposed
method outperforms other comparative methods by 3.80%, 0.73%,
0.53%, 0.63%, and 0.50% on average.

Table 2 shows the percentages of bad matching pixels in the
occlusion region. The quality of the proposed method in occlusion
outperforms other comparative methods by 51.75%, 11.25%, 3.43%,
9.58%, and 13.84% on average. These results show that our method
is highly effective in occlusion handling. The main contribution of
the proposed method, i.e., disparity map refinement, can be
is used as measure. The subscripts mean the accuracy ranking in the occluded region.

0] VarMSOH [21] Jang’s method [22] Proposed method

52.975 35.874 24.452

26.182 34.925 16.251

55.011 75.885 56.302

63.493 68.004 62.331

49.413 53.675 39.831

2.753 4.505 1.501
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applied to other methods. The final quality depends on the perfor-
mance of the algorithm that it is based on. The performance
improvement from reference methods can be examined by apply-
ing the proposed method to other approaches.
5. Conclusions

This paper proposes a disparity estimation method solving dis-
continuity and occlusion issues which cause inherent problems of
stereo matching. The proposed method exploits key techniques:
distance transform based discontinuity preserving disparity esti-
mation, occlusion detection via three constraints and occluded
region filling. These techniques significantly improve the disparity
quality maintaining the practicality. Experimental results show
that the proposed method produces more accurate disparity maps
compared to widely used other methods that incorporate occlusion
handling.
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