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Abstract Various types of multi-view camera systems have
been proposed for capturing three dimensional scenes. Yet,
color distributions among multi-view images remain incon-
sistent in most cases, degrading multi-view video coding
performance. In this paper, we propose a color correc-
tion algorithm based on the camera characteristics to effec-
tively solve such a problem. Initially, we model camera
characteristics and estimate their coefficients by means
of correspondences between views. To consider occlusion
in multi-view images, correspondences are extracted via
feature-based matching. During coefficient estimation with
nonlinear regression, we remove outliers in the extracted cor-
respondences. Consecutively, we generate lookup tables for
each camera using the model and estimated coefficients. Such
tables are employed for fast color converting in the final color
correction process. The experimental results show that our
algorithm enhances coding efficiency with gains of up to
0.9 and 0.8 dB for luminance and chrominance components,
respectively. Further, the method also improves subjective
viewing quality and reduces color distance between views.
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List of symbols

Pref Pixel values of reference
Ptar Pixel values of target cameras
Cgain Coefficients for gain
Coffset Coefficients for offset
Cgamma Coefficients for gamma
2bitdepth The total number of gray levels
y Pixel value of the reference image in the sample

set
x Pixel value of the target image corresponding

to y
β̄ Vector consisting of coefficients for each camera

property
J̄ē m × 3 Jacobian matrix whose i th row equals to

∂(ei (β̄))/∂β̄

xe Estimated value from the camera characteristic
curve

a Controlling parameter to distinguish outliers

1 Introduction

The three dimensional (3D) video service has gained mas-
sive attention due to its immersive and realistic impression to
viewers. In addition, the 3D video can be applied to various
applications such as broadcasting systems, games, simula-
tions and educational tools. The contents of the 3D video
service commonly consist of two data types: colorimetric
and geometric data. To acquire both data, numerous captur-
ing methods have been proposed such as 3D scanners, depth
cameras, and multi-view camera systems.

Although 3D scanners [1] and depth cameras [2] can
directly measure geometric information, they cannot cover
dynamic or outdoor scenes due to technical limitations. The
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multi-view images captured at different view positions are
widely used for 3D content generation without the above
problems [3].

At the early stage in multi-view image study, single-view
cameras were mainly adopted [4]. Researchers had to move
the camera position around the same object and capture
images iteratively. However, dynamic scenes could not be
captured in such a way. Thus, researchers had started to
increase the number of cameras such that the system can
capture scenes at different positions simultaneously.

Despite the advantages, a big obstacle is a huge amount
of data. Unfortunately, the amount of information in multi-
view images increases linearly as the number of cameras.
Therefore, the key technical building block of the multi-
view camera system is compression. The role of efficient
coding becomes much more important for 3D systems due
to the drastic data increase. Some of the past research and
standardization efforts to address this issue include Moving
Picture Experts Group(MPEG)-2 Multi-view Video Profile
(MVP) [5], MPEG-4 Multiple Auxiliary Component (MAC)
[6], and MPEG/JVT Multi-view Video Coding (MVC) [7,8].
Among them, MVC is the latest standard for multi-view
image compression, exploiting interview correlation for high
performance.

Although multi-view camera systems grant freedom of
selecting scenes to be captured, two problems exist: geo-
metrical mismatch and decline of color consistency. The for-
mer comes from misalignment of multiple cameras. It causes
unnatural viewpoint changes between multiple images and
obstructs multi-view image processing. This can be reduced
by camera calibration and rectification [9]. The latter is
related to inconsistent color distributions among neighbor-
ing views due to different camera properties. Noteworthy,
color consistency and color constancy are different. Color
constancy is a physiological element and a feature of human
color perception ensuring that the perceived color remains
relatively constant under varying illumination conditions.
Such a factor is not directly related to multi-view image pro-
cessing. This paper only deals with color consistency among
views since inter-view correlations and coding efficiency can
be affected.

The color distribution of a certain object depends not
only on reflectance properties of objects but also on prop-
erties of each camera. Even though we capture the same
object under the same illumination with cameras of the
same kind, the captured color distribution of each multi-
view image varies. The variations are caused by the different
property of charge-coupled device (CCD) or complementary
metal-oxide-semiconductor (CMOS) in each camera, jitter of
shutter speed and aperture, or the variation of angle between
objects and camera.

The color inconsistency problem degrades the coding per-
formance of MVC since MVC exploits interview correlation

to increase estimation accuracy. Hence, color correction that
reduces the color difference among views is vital for high
coding efficiency.

The purpose of color correction for multi-view images is
different from that for single-view images. Most of the sin-
gle-view color correction algorithms focus on recovering an
estimate of the scene illumination [10,11], but the main goal
of multi-view color correction is to match color distribution
among views.

2 Color correction for multi-view images

In order to solve the color inconsistency problem of the multi-
view images, various color correction algorithms have been
researched and proposed. The color correction algorithms for
multi-view images can be classified into two categories: with
and without pre-processing.

In the algorithms with a pre-process, a known target, such
as a color chart, is usually used to calibrate camera’s color
response property. Ilie and Welch [12] have developed a sys-
tem aimed at inter-camera color consistency. This method
consists of an iterative closed-loop calibration followed by
a refinement phase. Joshi et al. [13] have proposed an auto-
mated system for calibrating camera arrays to achieve color
consistency. The mentioned algorithms utilize a known color
chart placed in the scene and adjust camera registers by con-
sidering the information of the color chart. However, they
only considered a linear color response property even though
components of a camera, such as lens and light sensors,
have nonlinear properties. These algorithms should require
an additional pre-process for capturing the color chart.

For color correction without pre-processing, Fecker et al.
[14] have suggested the usage of histogram matching to
compensate color inconsistency between views. Chen et al.
[15] also have used histogram matching to compute multi-
plicative and additive variation factors. These methods pro-
vide reasonable performance, but depend on occlusion, a
newly exposed area according to view position. The occlu-
sion regions make the histogram-based statistical model inac-
curate since they are one-sided textures. In order to avoid
this, we should calculate the image histogram only on over-
lapping regions; however, this is impossible without depth
information. Therefore, large occlusion regions degrade the
performance of such approaches.

Some alternative algorithms using correspondences betw-
een neighboring views have been researched [16,17]. Gangyi
et al. have proposed a region correspondence-based algo-
rithm. They utilize a mapping relationship built with similar
statistical model through Expectation-maximum segmenta-
tion, thus the performance depends on the segmentation
results. Yamamoto et al. [17] have proposed an energy func-
tion with dynamic programing. They have defined an energy
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function consisting of corresponding and step-by-step energy
functions. However, this method is also limited by the man-
ual determination of coefficients in the energy function that
can significantly affect the performance. In such a way, the
conventional algorithms for color correction are unable to
solve the color inconsistency problem effectively.

Therefore, in this paper, we propose a color correction
algorithm that considers a nonlinear camera property and the
occlusion region without any pre-process. The contribution
of this work is that we correct the color distortion on the basis
of the camera characteristic curve with an outlier-eliminated
nonlinear regression. For camera characteristic curve model-
ing, the main camera properties, gamma, offset, and gain, are
analyzed and expressed as numerical formulas. Using the fea-
ture-based matching algorithm, we extract correspondences
between reference and target views and estimate coefficients
of the camera characteristic curve. Afterward, we generate
a lookup table and convert the color distributions of target
views. The proposed algorithm is implemented in the MVC
software for improving coding performance of multi-view
video.

3 Proposed color correction algorithm

3.1 Camera characteristic model

Cameras have various properties that affect color distribution
of captured images. Especially in the multi-view camera sys-
tem, controlling them as we wish is burdensome. This is one
of the main reasons why multi-view images have inconsistent
color distributions among views. To quantitatively measure
color inconsistency and correct it, we model a camera char-
acteristic curve in regard to the colorimetric relationships
between reference and target cameras.

The camera characteristic curve represents how much dif-
ferences are induced when certain intensity light is passed
into two cameras. Figure 1 shows the common difference
types coming from camera properties. The long-dotted line
represents the relation when two cameras have identical char-
acteristics. The other lines stand for relations when two cam-
eras have different camera properties such as gain, offset, and
gamma.

Each relation can be expressed as (1).

Gain : Pref = Cgain × Ptar

Offset : Pref = Ptar + Coffset

Gamma : Pref =
{

Ptar

/
(2bitdepth − 1)

}Cgamma

×(2bitdepth − 1) (1)

where Pref and Ptar are pixel values of reference and target
cameras. Cgain, Coffset, and Cgamma represent coefficients for

Fig. 1 Relative pixel intensities between target and reference views
according to different camera properties: offset, gain, and gamma

each property. 2bitdepth is the total number of gray levels for
each color channel, and eight bits are often used for common
digital images.

(
2bitdepth − 1

)
term is for normalization of the

range of pixel values. We combine three properties into the
camera characteristic curve as (2).

Pref = Cgain

{
Ptar

/
(2bitdepth − 1)

}Cgamma

×(2bitdepth − 1) + Coffset (2)

The coefficients in the camera characteristic curve reflect
the inconsistency for each property. The coefficients change
according to target and reference images. Thus, estimating
the coefficients from captured images is a crucial process

3.2 Correspondence extraction

If we estimate the coefficients from entire parts of the images,
the occlusion parts have a bad influence on the coefficients.
Therefore, we estimate the coefficients using only pixels with
correspondences. Unfortunately, since multi-view images
are captured at different positions with different angles,
co-located pixels in both images are not guaranteed as corre-
spondences. Through the camera projection model, a certain
point can be projected to different positions on the two image
planes according to the various factors.

There are various algorithms to extract correspondences
between images; most of them mainly employ intensity val-
ues as a criterion. However, it is not appropriate for the images
having the color inconsistency problem. In this paper, we use
the Scale-invariant feature transform (SIFT) algorithm [18].
In particular, SIFT is an algorithm in computer vision used
for detecting and describing local features in images. The
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Fig. 2 Result of feature-based matching for the uli sequence. The bold
lines are mismatched correspondences

SIFT features, based on the appearance of the object at par-
ticular interest points, are local and invariant to image scale
and rotation. The SIFT-based matching algorithm does not
provide a dense correspondence map but extracts accurate
and sparse correspondences.

An image occasionally has saturated pixels that are out
of the dynamic range. Since they degrade the accuracy of
coefficient estimation, we only regard samples whose pix-
els are smaller than 250 and larger than five as valid sam-
ples. This process reduces the influence of saturation parts
and hardware limitations, and improves the performance of
coefficient estimation. This threshold values are not for off-
set compensation. The offset problem is treated in the camera
characteristic curve in our algorithm.

Figure 2 shows the results of the SIFT matching for
two images of the uli sequence. Most of the extracted cor-
respondences (thin lines) are reliable, but some incorrect
correspondences (bold lines) also exist. Due to the degra-
dation of coefficient estimation caused by outliers, we use
nonlinear regression with an outlier removal process.

3.3 Coefficient estimation

With the correspondences extracted in the previous section,
we estimate the coefficients of the camera characteristic
curve. Due to the nonlinearity of the curve and outliers, we
propose an outlier-removed nonlinear regression based on
the Levenberg-Marquardt algorithm [19]. The algorithm has
coefficient estimation using regression and outlier removal
processes. These are alternately carried out.

First, we define an error function as in (3).

ei (β̄) = yi − f (xi , β̄) (3)

where y is a pixel value of the reference image in the sample
set and x is the pixel value of the target image corresponding
to y. The function f , the camera characteristic curve, can be
represented by (4), and the vector β̄ consists of coefficients
for each camera property.

f (xi , β̄) = β0

{
xi

/
(2bitdepth − 1)

}β2

×(2bitdepth − 1) + β1 (4)

The squared sum of error values is defined as the value S,
and we reduce S by changing the value of vector β̄.

S(β̄) =
∑

m

e2
i (β̄) (5)

Starting with an initial guess β̄0, the method proceeds
iteratively until the error value S converges to the minimum
value. In this paper, the initial vector is set with {1,0,1},
which is the set of coefficients for the ideal case.

β̄s+1 = β̄s + δβ̄ (6)

where s stands for the number of iteration, and the updating
term δβ̄ satisfies the augmented normal equations as (7). In
(7), ē is the vector of functions ei , and the matrix J̄ē is the
m×3 Jacobian matrix whose i th row equals to ∂(ei (β̄))/∂β̄.

N̄δβ̄ = − J̄ T
ē ē (7)

In the augmented normal equation, the matrix, J̄ T
ē J̄ē, is

the approximate Hessian and an approximation to the matrix
of second-order derivatives. The vector N̄ consists of two
terms for fast speed and the assurance of convergence. Both
are controlled by damping parameter λ as shown in (8).

N̄ =
(

J̄ T
ē J̄ē + λ · diag

(
J̄ T

ē J̄ē

))

δβ̄ = −
(

J̄ T
ē J̄ē + λ · diag

(
J̄ T

ē J̄ē

))−1
J̄ T

ē ē (8)

If the damping parameter is set to a large value, matrix N̄
is nearly diagonal and the updating step is near the steepest
descent direction, guaranteeing that the output value con-
verges to the minimum; however, such a process is time-
consuming. While the damping term has a small value, the
process approximates the exact quadratic step appropriate
for a fully linear problem. This parameter is automatically
adjusted during iteration. Initially, we set λ with λ0 and com-
pute the residual sum of squares S(β̄) after one step from the
starting point with the damping factor of λ = λ0. Secondly,
we set λ with λ/v where v is larger than zero. If both are
worse than the initial point, then the damping is increased by
successive multiplication by v until a better point is found.
This process is repeated until residue value S converges to
the minimum value.

After regression, the curve having the minimum residue
value is obtained, yet this result can be influenced by outli-
ers coming from the inaccurate matching process as shown
in Fig. 2. For outlier removal, we distinguish valid samples
from the initial samples. Overall process is shown in Fig. 3.
We discard samples located outside doubled h and discard
them from the sample set. The range of h is calculated by (9)

h = a

√
1

m

∑
m

(xi − xe)2 (9)
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Fig. 3 Outlier removal process: a coefficient estimation with the initial samples, b finding valid sample region, and c coefficient estimation with
valid samples

Fig. 4 Results of nonlinear
regression: a without and b with
outlier removal

where xe is an estimated value from the camera characteristic
curve, and the value a is a controlling parameter to distin-
guish outliers from the sample set that defines a permissible
range of outliers. Empirically determined, we use a constant
value 1.5 for a. After outlier removal, we apply the nonlinear
regression process again. This cycle consists of regression,
and outlier removal is repeated until all remaining samples
are in the valid sample region. This process is individually
performed for each channel because a camera has individ-
ual sensors for each channel, containing independent gain,
gamma, and offset values.

Figure 4 shows the examples of the nonlinear regression
with and without outlier removal. While several outliers bend
the fitting curve up in Fig. 4a, the well-fitted curve can be
obtained as shown in Fig. 4b.

Figure 5 demonstrates the calculated camera character-
istic curve and the initial samples of the uli sequence. In
spite of serious outliers, the camera characteristic curves are
well fitted without their influences. Table 1 shows the cal-
culated coefficients of the camera characteristic model. The
processing time for coefficient estimation including SIFT
matching depends on various attributes such as image size,
the number of samples, and outliers. On Intel Xeon X5450
processor at 3.0 GHz, 5–15 s are taken. The estimated coef-
ficients are valid until the camera settings change. There-
fore, we do not need to conduct this process for every
frame.

3.4 Lookup table and conversion

We convert pixel values of the target view by using the cam-
era characteristic curve and estimated coefficients. In order
to convert pixel values for one frame, 0.67 s is necessary
for XGA images. For faster execution, we generate lookup
tables that possess all intensity values in the dynamic range
and their converting values by using (10).

Valuelookup_i = β0

{
i
/

(2bitdepth − 1)
}β2

×(2bitdepth − 1) + β1 (10)

By changing i from 0 to 2bitdepth − 1, the corrected values
Valuelookup_i are calculated and saved in the lookup table.
The table reduces the time required to convert pixel values
from 0.67 to 0.45 s. Figure 6 demonstrates the result of color
correction.

4 Experimental results and analysis

The two experiments were carried out to evaluate the per-
formance of the proposed algorithm. The first experiment
assesses the performance of color correction in itself, while
the second evaluates the coding performance using our algo-
rithm as a pre-processing method.
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Fig. 5 Camera characteristic
curves for view 3 of the uli
sequence (reference view—view
4): a red, b blue, and c green
channels

Table 1 Estimated coefficients of the camera characteristic curve

Coefficient Red Green Blue

Gain 1.01 0.94 0.94

Offset 25.04 −1.10 21.85

Gamma 1.32 1.06 1.37

Fig. 6 Original view 4 and view 3 of the uli sequence, and
color-corrected view 3

4.1 Color consistency

First, we tested on the race, flamenco, breakdancers, and
ballroom sequences, which are standard multi-view sequen-
ces of MPEG. We selected sixty temporal frames of five
views for each sequence and implemented two conventional
algorithms: histogram matching (HM) [14] and energy func-
tion (EF) [17] for comparison. In [14], Fecker et al. men-
tioned that global disparity compensation does not ensure
improvement of coding efficiency so they excluded it in their
experiments. Therefore, we also do not apply the method in

our procedure. We used the same and constant parameters
Yamamoto et al. have used in [17].

Figures 7 and 8 show the original and color-corrected
sequences. Since each sequence has five views with different
conditions, showing all sequences at once is not practical due
to limited space. Therefore, we only demonstrate the race and
flamenco sequences in this paper. While finding differences
in the race sequence is problematic due to small and similar
occlusions, the flamenco sequence shows distinct results for
each algorithm.

For close observation, we enlarged some parts (red boxes
in Fig. 8) and attached them in Figs. 9 and 10 in view
order. While the color distribution of the 1st, 2nd, and 4th
views of HM is noticeably different than the reference view
(view 3) in Fig. 9b, EF, and our algorithm show stable results
without occlusion problem. However EF has another prob-
lem in areas of smooth gray levels as shown in Fig. 10c.
The ridges look like false contouring effects, and gray scale
inversion can even appear. Such visual artifacts arise when
some acquired samples are inaccurate or the samples do not
increase step-by-step, since the two energy functions of [17]
conflict. Although the constant weighting value used in EF
controls this confliction, it is hard to define the constant value
properly for various images. This phenomenon can cause low
coding efficiency due to the increase in high frequency com-
ponents. Contrarily, the proposed algorithm corrects color
distributions well and maintains image smoothness.
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Fig. 7 Original and
color-corrected race sequences:
a original, b HM, c EF, and
d proposed

Fig. 8 Original and
color-corrected flamenco
sequences: a original, b HM,
c EF, and d proposed

Fig. 9 Enlarged complex parts
of the flamenco sequence:
a original, b HM, c EF, and
d proposed
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Fig. 10 Enlarged gradation
parts of the flamenco sequence:
a original, b HM, c EF, and
d proposed

Fig. 11 Results of the subjective quality assessment

Thirteen observers participated in the subjective quality
assessment. During the assessment, the original and color-
corrected test sequences were displayed in a random fash-
ion. Each view of the sequences was displayed in the view
order at a one-second interval. The observers were asked to
give scores according to the ITU-R BT.500-11 recommenda-
tions [22]. The test results are demonstrated in Fig. 11. While
the performances of HM and EF depend on test sequences,
the proposed algorithm shows stable and reliable results.
Although the proposed algorithm ranked low on the breakd-
ancers sequence, there was little difference in the viewing
quality among the algorithms. Other than the breakdanc-
ers sequence, the proposed algorithm was given the highest
rating.

For quantitative analysis, we captured the test images with
the GretagMacbeth ColorCheckerTM by using a multi-view
camera system, which consists of five HD color cameras
(Canon XL-H1). We used two camera configurations: iden-
tical and automatic. In the identical configuration (Ciden),
all cameras are equivalently set up, and the settings are
fixed during capturing. The automatic configuration (Cauto),
which is developed by Canon, automatically controls several

camera options such as white balance, shutter speed, and
aperture ratio, according to scenes. In Cauto, the settings can
be changed on the fly. Figure 12a and b demonstrate the cap-
tured images with Ciden and Cauto, respectively.

Figure 12c–e are the results of HM, EF, and our algo-
rithms on the multi-view images captured with Ciden. The
background in Fig. 12c becomes blue as the red grid board
appears in view 4 and view 5, which is a typical occlusion
problem.

In order to objectively measure color consistency, we
extracted color samples of the color charts from all views.
Further, we calculated mean square error (MSE) values and
Euclidean distances (ED) in the CIELab color space. CIELab
is a standardized linear color space that makes in the CIELab
space linearly related to human judgments of color differ-
ences. The CIELab colors are described by ‘L’ for lightness,
‘a’ for green to magenta, and ‘b’ for blue and yellow. We
calculate ED by

ED= 1

m

m∑
i=1

√
(Li −Lre f _i )2 + (ai −are f _i )2 + (bi −bre f _i )2

(11)

where m is the total number of samples in the color chart.
The subscript Ref means the sample value of the reference
image, view 3. Table 2 summarizes the results, and Fig. 13
displays each ED in a diagram.

While the performance of HM depends on occlusion parts,
EF and our method show the stable and reliable results. How-
ever, the coding efficiencies are different due to EF’s weak-
ness in smooth gray level areas.

4.2 Coding performance

We conducted experiments on the MPEG standard sequences
in order to verify the coding efficiency. We additionally
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Fig. 12 Captured test images
and the results of color
correction: a Ciden, b Cauto,
c HM, d EF, and e proposed

Table 2 Mean square errors and Euclidean distances in the CIELab
color space

Method View 1 View 2 View 4 View 5

Ciden MSE (L) 1.38 0.52 1.06 1.18

MSE (a) 0.23 0.22 0.28 0.32

MSE (b) 0.29 0.19 0.22 0.21

ED 1.43 0.60 1.12 1.24

Cauto MSE (L) 0.51 0.14 0.22 0.41

MSE (a) 0.32 0.16 0.26 0.24

MSE (b) 0.23 0.16 0.69 0.20

ED 0.64 0.26 0.77 0.52

HM MSE (L) 0.41 0.48 1.25 1.46

MSE (a) 0.44 0.20 0.04 0.50

MSE (b) 0.31 0.39 0.95 0.96

ED 0.67 0.65 1.62 1.82

EF MSE (L) 0.30 0.22 0.24 0.28

MSE (a) 0.28 0.28 0.28 0.27

MSE (b) 0.25 0.16 0.21 0.22

ED 0.48 0.39 0.42 0.44

Proposed MSE (L) 0.28 0.22 0.22 0.25

MSE (a) 0.28 0.26 0.27 0.26

MSE (b) 0.18 0.18 0.18 0.27

ED 0.43 0.39 0.39 0.45

compared our algorithm with illumination compensation
(IC), implemented in the Joint Multi-view Video Model
(JMVM) reference software [20], as well as HM and EF.
All algorithms were implemented on JMVM 6.0, and each
sequence was coded, in the YUV color domain with quanti-
zation parameters (QP) of 22, 27, 32, and 37.

Fig. 13 Quantitative comparison

Figures 14, 15, 16 and 17 are the rate distortion curves for
each sequence. Tables 3 and 4 summarize the comparison
of the coding performance. The PSNR difference or bit sav-
ing was measured using the Bjontegaard metric [21]. HM and
EF show better results in some test sequences, although wide
variations exist according to sequences and color channels.
The performances of HM and EF are drastically degraded
especially when the sequence had large occlusion or gra-
dation regions, which can be shown in the results of the
flamenco sequence.

The proposed algorithm exhibited the best coding effi-
ciency and stability over all test sequences. The luminance
BDPSNR gains ranged from about 0.2 to 0.96 dB when com-
pressing the original data with the JMVM and illumination
compensation not applied.

5 Conclusion

In this paper, we proposed a color correction algorithm
based on the camera characteristic curve for multi-view video
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Fig. 14 Rate distortion curves for the race sequence

Fig. 15 Rate distortion curves for the flamenco sequence

Fig. 16 Rate distortion curves for the breakdancers sequence

Fig. 17 Rate distortion curves for the ballroom sequence
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Table 3 Comparison of BDPSNR for the illumination compensation, histogram matching, energy function, and proposed method

BDPSNR (dB) Y U V

IC HM EF Proposed IC HM EF Proposed IC HM EF Proposed

race 0.48 0.39 0.32 0.96 0.24 0.55 0.47 0.83 0.22 0.33 0.15 0.83

flamenco 0.15 0.08 −0.40 0.58 0.09 0.02 0.03 0.55 0.07 −0.05 −0.46 0.58

breakdancers 0.12 0.10 0.18 0.40 −0.02 −0.11 −0.37 0.24 0.01 0.03 −0.12 0.33

ballroom 0.09 0.05 0.24 0.20 0.04 0.05 0.06 0.14 0.03 −0.02 −0.04 0.05

Table 4 Comparison of BDBR for illumination compensation, histogram matching, energy function, and proposed method

BDBR (%) Y U V

IC HM EF Proposed IC HM EF Proposed IC HM EF Proposed

race −10.82 −8.67 −7.34 −20.57 −7.36 −17.18 −14.95 −26.52 −7.44 −11.55 −5.32 −27.13

flamenco −3.18 −1.49 10.62 −11.63 −2.92 −0.46 −0.99 −17.26 −2.51 2.00 20.14 −19.41

breakdancers −5.87 −4.57 −7.94 −16.78 1.24 7.76 32.81 −13.97 −0.69 −1.73 8.87 −18.68

ballroom −2.20 −1.29 −6.13 −5.08 −1.63 −1.80 −2.39 −5.56 −1.09 1.04 1.73 −1.90

coding. In order to model camera characteristics, the camera
properties were analyzed and expressed as numerical for-
mulas. We extracted sparse and accurate correspondences
between views and estimate the appropriate coefficients of
the camera characteristic curve with outlier-removed non-
linear regression. Finally, we generated lookup tables and
corrected the color distribution of target views. In the exper-
imental results, the proposed algorithm shows good subjec-
tive qualities and reduces Euclidean distances in the CIELab
color space. Unlike other algorithms, our method is robust
to occlusion and various textured regions. To summarize, the
proposed method achieved 0.54 dB PSNR gain or 13.4 % bit
saving on average compared to the conventional method.
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