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Abstract In this paper, we propose a direct depth map
acquisition method for the arc camera array as well as the
parallel camera array. In conventional stereo matching algo-
rithms, image rectification is necessary where disparity val-
ues are obtained by identifying correspondences in the iden-
tical horizontal line of stereo images. The acquired dispar-
ity values are then transformed to depth values. However,
image rectification may fabricate unwanted outcomes related
to the arc camera array. Thus, the proposed method excludes
image rectification and directly extracts depth values using
an epipolar constraint. In particular, occlusion detection and
handling processes are inserted to increase depth map accu-
racy. Further, belief propagation-based energy optimization
is employed to confirm occlusion regions. Then, reasonable
depth values are assigned to obtained occlusion regions using
distances and color differences of neighbor pixels. Experi-
mental results show that compared to the conventional meth-
ods, the proposed method generate more stable depth maps
with fewer limitations.

Keywords Epipolar constraint · Image rectification ·
Occlusion handling · Stereo matching

1 Introduction

Recently, interests in 3D entertainment systems have risen
thanks to the financial success of numerous 3D films. The
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3D image can be acquired by multiple cameras; multiview
images are captured with wide viewing angles. In addition,
depth images are necessary for a wider range of applications
[1,2]. Depth images represent depth information of the 3D
scene; depth information allows synthesis of non-existing
views by employing depth image-based rendering (DIBR)
[3,4].

Three approaches exist to acquiring depth information:
active depth sensors, passive depth sensors, and hybrid depth
sensors. Active depth sensors [5] directly measure depth data
using a physical sensor, while passive depth sensors apply
correlation of images captured from at least two cameras
[6,7]. Hybrid depth sensors combine the two methods to
cover their weaknesses [8]. Active and hybrid depth sensors
can use only low-resolution images due to hardware limita-
tions and require additional expensive physical sensors, e.g.,
depth cameras. Therefore, we acquire depth data using pas-
sive depth sensors at low price despite lengthy processing
time and relatively low accuracy.

Stereo matching [9], a widely researched topic in com-
puter vision, is one of the passive depth sensors. Funda-
mentally, two images of the same scene are given which are
taken from slightly different viewpoints. Naturally, 3D data
are acquired to find the corresponding points in the other
image. In the human visual system, this is applied for guess-
ing depth information from disparities obtained from both
eyes. Stereo matching algorithms to date have been mainly
developed for the parallel camera array [10]. Yet, the arc
array is more actively used for the similar field of view when
3D image acquisition is processed, e.g., filming. In this case,
the conventional algorithms used in the parallel arrays are
not effective.

Most stereo matching algorithms rectify both images for
the sake of simplicity and accuracy. Consecutively, corre-
sponding points are found in the identical horizontal line of
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two images. However, image rectification comes with draw-
backs in the arc array such as image distortion although which
may be useful in the parallel array. This is due to the fact that
while two images are originally on similar planes in parallel,
their convergence angles are compulsorily transmitted to the
same plane in the arc array.

In this paper, we discuss solving the problems of con-
ventional methods that appear in the arc array. Initially, we
examine image rectification, a prerequisite stage in conven-
tional stereo matching methods. We propose a direct depth
extraction method using an epipolar constraint to overcome
the discussed issues. Further, occlusion detection and han-
dling methods are also proposed to enhance the quality of
depth maps. The proposed method displays less limitation
and generates more flexible depth maps.

The remainder of this paper is organized as follows. In
Sect. 2, we briefly explain the problem of 3D information
acquisition via image rectification in the arc array. In Sect. 3,
we explain our depth acquisition method based on an epipo-
lar constraint. Section 4 analyzes experimental results of the
proposed method. Finally, our conclusions are presented in
Sect. 5.

2 Rectification problem in the arc array

In stereo matching, most recent algorithms are based on
image rectification. Specifically, corresponding points are
assumed to be on the identical horizontal line; this assump-
tion is used for obtaining 3D information. Image rectification
is a transform process which makes epipolar lines of stereo
images parallel. The rectified images possess parallel epipo-
lar lines on the coplanar image planes [11]. Thus, the corre-
sponding points of two images share the same vertical coordi-
nate. As a result, the only difference of the images becomes a
mere horizontal displacement. Naturally, 3D information can
be obtained by disparity-to-depth transformation. Figure 1
illustrates image rectification in the arc camera array. Two
views located on distinct planes are transformed to copla-
nar image planes with epipolar lines of corresponding points
becoming identical.

PL and PR represent arbitrary corresponding points in the
left and right images. The real 3D position of the correspond-
ing point is expressed as ‘P .’ lL and lR are epipolar lines of
the corresponding point in the left and right images.

Image rectification offers advantages in obtaining accurate
3D information in the parallel camera array while causing
problems in the arc camera array. Distortion of the original
images occurs due to the transformation of image planes.
Figure 2 illustrates the cases of the rectification problems.
In Fig. 2, several pixels in the original plane transform to
one pixel in the transformed plane. This induces informa-
tion loss of some parts in the image. In order to try to solve

Fig. 1 Rectification in arc camera array. After image rectification, the
corresponding points are found in the same horizontal line of two
images. 3D information can be obtained by disparity-to-depth trans-
formation

Fig. 2 Examples of image rectification problem. Several pixels are
transformed to only one pixel position by image rectification. This
causes loss of image information

the problem, image up-sampling or rectification filling can
be applied. However, they are inaccurate processes including
errors. In the proposed method, since error-free depth estima-
tion is possible using original images, we do not need extra
steps such as up-sampling and filling process of information
loss.

Figure 3 shows the example of image rectification with-
out filling process. Figure 3a and b represents the original
and rectified images, respectively. Figure 3c represents trans-
formation from the rectified image to the original image
plane. Accurate depth estimation of information loss parts
in Fig. 3c is impossible. Acquiring 3D information by pre-
serving original images of the arc array cannot be solved
by image rectification. Thus, we propose a depth acquisition
method that excludes image rectification which fabricates
image distortion.
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Fig. 3 Result of image
rectification without filling
process. Image rectification
generates distortion and
information loss. a Original
image. b Rectified image. c
Transformation from the
rectified image to the original
image plane. Accurate depth
estimation lost information parts
in c is difficult d Part of image
rectification result

Related to stereo matching without rectification, Robert
and Deriche [12] found corresponding points via camera
parameters instead of searching in the identical horizontal
line. However, their method induces high error rate since
they use three images including aligned epipolar lines for
depth estimation. The main contribution of their work is
preservation of discontinuities. For this, they disallow reg-
ularizing and smoothing across such discontinuities. In the
proposed method, we also consider this through smoothness
strength of the energy function. Lopez et al. implement stereo
matching using segmentation [13]. Since segments are used
as the matching primitive, the performance of this method
depends on the effectiveness of segmentation. Furthermore,
the assumption of constant depth in each segment may cause
problems since this is improper in practice.

3 Depth map acquisition using epipolar constraints

3.1 Epipolar constraints in stereo images

As discussed above, finding corresponding points in the same
horizontal line through image rectification generates visual
distortion. Further, obtaining disparity values in the whole

Fig. 4 Corresponding point found according to epipolar constraint
from stereo images. Direct depth acquisition without depth transfor-
mation of disparity information can be processed by epipolar constraint

region is burdensome. Nonetheless, unconditionally scan-
ning both horizontal and vertical directions is ineffective in
terms of time and accuracy. In order to reduce the corre-
spondence problem to one-dimensional search, epipolar con-
straints can be beneficial. Figure 4 illustrates corresponding
point finding by using epipolar constraints. For the stereo
view denoted by C1 and C2, we have a 3D position P and
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two image points—p1 and p′
1—corresponding points on each

view image [14]. pr1 is the collocated position of p1 in the
right image. The epipolar plane is defined by the three points:
P, C1, and C2. Thus, p′

1, the corresponding point of p1, is
on the epipolar plane. The epipolar line is defined as the line
that intersects the image plane and epipolar plane. There-
fore, the corresponding point of p1 is located on the epipo-
lar line in the right image plane [14]. Defining the disparity
between corresponding points without rectification is chal-
lenging since the disparity direction is not only horizontal but
also vertical. Figure 4 illustrates that the disparity between
collocated position ‘pr1’ and the corresponding point ‘p′

1’
has two directions ‘x’ and ‘y.’ Furthermore, disparity values
may be negative-signed.

Since common stereo matching algorithms employ one-
dimensional disparity, disparity information can be easily
transformed to depth information by (1).

d = f × l

disp
(1)

d, f, l, and disp represent depth value, focal length, gap
between cameras, and disparity value, respectively. Detec-
tion of corresponding points by epipolar constraints does not
require one-directional search due to the omission of recti-
fication. Thus, we present direct depth acquisition without
depth transformation of disparity information.

3.2 Direct depth value extraction

We use a global method to extract depth values. Principally,
an energy function in regard to matching is defined by maxi-
mum a posterior Markov random field (MAP-MRF), solved
through optimization [15]. In general, compared to local
methods, global methods provide higher quality results at
the cost of lengthier execution [16]. Since accuracy is more
prioritized, we adopt a global method. We solve the high-
complexity problem in stereo matching by means of a hierar-
chical structure. The energy function for matching is defined
as in (2) [15].

E(x, y, d) = Edata(x, y, d) + λsmooth Esmooth(x, y, d)

(2)

where x and y are horizontal and vertical coordinates of
the reference image while d represents the depth value. The
energy function, E(x, y, d), comprises a data term and a
smoothness term. The matching costs for data and smooth-
ness terms are defined in (3). The smoothness strengthλsmooth

is adaptively refined by considering discontinuity regions [7].

Edata(x, y, d) = |IL(x, y) − IR(x ′, y′, d)| (3)

Esmoothness(x, y, d) =
∑

(p,q)∈N

W (p, q) (4)

IL(x, y) is the pixel value in the left image given (x, y)

coordinate. IR(x ′, y′, d) is the matched pixel value in the
right image given the depth value at (x, y) in the left image,
denoted by d. N and W (p, q) represent neighboring pix-
els and their depth value difference, respectively. In order
to find the matched pixel in IR(x ′, y′, d), two processes for
3D projective transformation are used. First, the left image
pixel is backprojected to the 3D space based on the camera
parameters and depth information. Then, the backprojected
pixel in the 3D space is projected to the right image [17]. 3D
projective transformation is performed as follows.

(x, y, z)T = Rsrc A−1
src (u, v, 1)T du,v + tsrc (5)

(l, m, n)T = Adst R−1
dst (x, y, z)T − tdst (6)

(u′, v′) = (1/n, m/n) (7)

where Asrc, Rsrc, and tsrc are internal, rotation, and trans-
lation parameters in the left image, respectively. Similarly,
Adst, Rdst, and tdst are those in the right image. du,v values
are the depth candidates at (u, v) coordinate in the image.
The left image pixel is sent to the 3D space by (5) and pro-
jected to the right image by (6). (u′, v′) in (7) represents
the projected coordinate to the right image. Through such
processes, IR(x ′, y′, d) in (3) is determined and the energy
function, E(x, y, d), is solved by the optimization method
provided from Constance Space Belief Propagation (CSBP),
[18] considering complexity. The obtained depth map pro-
vides initial values for generating more accurate depth infor-
mation.

3.3 Occlusion detection and handling

Since stereo images are captured from different positions,
occlusion occurs; some pixels are visible only in one image
[7]. Therefore, obtaining an accurate depth map is dif-
ficult solely by the energy function of depth extraction
defined in Sect. 3.2. In order to solve this problem, occluded
pixel detection and reasonable depth value designation are
critical.

We propose several constraints for occlusion detection
based on the uniqueness constraint [7]. Firstly, we project
all pixels in the left image to the right image using the left
depth map to generate the left occlusion map. In this case,
two candidates for the occlusion region exist. The first candi-
date is the group of pixels which are projected to outside the
right image plane. They are regarded as occlusion due to the
unmatching pixels in the right image. The energy function is
defined in (8).

EO(du,v) =
∑

u,v

|ou,v − GO(u, v; du,v)| (8)

GO(u, v; du,v) is a binary map constructed as the result of
projection. If the pixel is projected to inside the right image
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Fig. 5 Occlusion detection using projection. Unmatching and many-
to-one mapping pixels are regarded as occlusion

plane, GO(u, v; du,v) is set to ‘0,’ otherwise, ‘1.’ We express
the occlusion value ou,v in binary, ‘1’ and ‘0’ representing
occlusion and non-occlusion, respectively.

The second candidate is the case that many pixels in the
left image are projected to the same pixels in the right image.
In such a case, several pixels are actually occluded by other
pixels in the 3D space. The energy function regarding this is
defined in (9).

EW(du,v) =
∑

u,v

|ou,v − GW(u, v; du,v)| (9)

GW(u, v; du,v) is set to ‘1’ in the case of many-to-one map-
ping. Among the matching pixels in the left image, the near-
est point from the right camera is more likely to be visible.
Thus, the weighting factor applied to the nearest pixel from
the right camera is different from those applied to the oth-
ers. Figure 5 illustrates occlusion detection method through
projection.

The other constraint for occlusion detection checks
whether corresponding pixels from interim depth maps are
located at the same positions in the 3D space. If a particular
pixel in the left image is not occluded, the 3D position of this
pixel is identical to that of the corresponding pixel in the right
image. The energy function for this constraint is defined as
follows.

Ec(du,v, du′,v′) =
∑

u,v

|ou,v − Gc(u, v; du,v, du′,v′)|

(10)

If the positions of corresponding points from the two images
are equal, Gc(u, v; du,v, du′,v′) is set to ‘0,’ otherwise, ‘1.’
Figure 6 illustrates this process.

So far, we have presented occlusion detection method
using several constraints. The final energy function combin-
ing these constraints for occlusion detection is defined as

EOD =
∑

u,v

[(1 − ou,v)Edata(x, y, du,v) + λaou,v]

Fig. 6 Occlusion detection using cross-check in 3D space. Occlusion
is determined by checking consistency between stereo images

+λO EO(du,v) + λw Ew(du,v) + λc Ec(du,v, du′,v′)

+
∑

u,v

∑

p,q∈N

λs|op − oq|. (11)

If the probability that the pixel at (u, v) being occluded
is high, each binary map from (8), (9), and (10) is set to
‘1.’ Otherwise, the binary map is set to ‘0.’ Thus, when the
hypothesized occlusion value and binary map are equal, the
final function (11) has low energy. (11) also includes the
color difference for data term in addition to the discussed
constraints, coming from the assumption that large color dif-
ferences generate mismatches, although a particular pixel
may be regarded as visible. The last represents the smooth-
ness term for the energy function of occlusion detection. The
final energy function (11) is optimized with respect to ou,v

by belief propagation. Occlusion value in position (u, v) is
computed as follows.

Ou,v = arg min
Ou,v

EOD. (12)

After occlusion detection, reasonable depth values should
be assigned to occluded pixels. Since occlusion is visible only
in one image, determining accurate depth values is impracti-
cal. Yet, depth values of occlusion are similar to those of non-
occlusion in the background. Hence, by using initial depth
values from neighboring pixels in the non-occluded region,
depth can be effectively estimated in the occluded region.
Initial depth map was already obtained by (2). In the pro-
posed method, we perform occlusion handling by propagat-
ing depth values of non-occluded pixels to the occlusion. For
this, we propose a potential energy function as a measure of
likeness which is defined by (13) according to the distances
and color differences from neighbor pixels. The depth value
of the most analogous region is selected as the optimal depth
value of the current occluded pixel.
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Table 1 Parameters used in experiments

λa λO λw λc λs σ

Value 7.5 12 3 12 4.2 7

EOH(u, v, du,v) =
∑

(p,q)∈Nv

(1 − op,q)
1

dist[(u, v), (p, q)]

× exp

(
−diff[(u, v), (p, q)]

σ 2

)
(13)

Nv means neighboring pixels whose spatial distances from
occluded pixels are less than the predefined value. In
this paper, ‘41’ is used as the predefined distance value.
dist[(u, v), (p, q)] is the spatial distance between occluded
pixel (u, v) and neighboring visible pixel (p, q), while
diff[(u, v), (p, q)] is the color difference. The depth value,
which has the maximum value of (13), is determined as
the optimal depth value for the pixel (u, v). This process
assigns the optimal disparity by finding the similar region
to the occlusion part according to the weighting of distance
in a pixel-by-pixel manner. The occlusion handling process
works at only occluded pixels which are near non-occluded
pixels. Thus, it completely handles thin or small occlusion.
However, wide and large occlusion is processed at only near
non-occluded pixels. In order to solve this problem, we apply
the potential energy function (13) for occlusion handling
repeatedly until all occluded pixels are filled. Finally, we
apply post-processing to the acquired depth map to improve
the quality [19].

4 Experimental results and analysis

In order to evaluate the performance of the proposed method,
we tested five stereo images with two kinds of camera
arrangement. These test data are Newspaper and Café in
the parallel array and Fitness1, Fitness2, and Friends in the
arc array. The resolutions of the test images are 1,920 ×
1,080 except for Newspaper. Newspaper is captured at
1,024 × 768 resolution. Color correction was applied to
these data sets for accuracy of matching [20]. The camera
parameters of these images are estimated by camera cali-
bration [21] for image rectification and 3D projective trans-
formation. Table 1 lists parameter values used in the pro-
posed method. These are acquired by experiments to balance
energy terms.

Figure 7 shows the initial depth map directly obtained
by epipolar constraints, and the occlusion map acquired
by the proposed occlusion detection in the parallel camera
array.

Figure 8 shows the results of the proposed method for
direct depth value extraction and occlusion detection in the
arc camera array.

Figures 9, 10, 11, 12, 13 illustrate visual comparisons of
depth maps—results of the proposed method and the con-
ventional methods. The methods of (a), (b), and (c) in the
figures generate the depth image by transforming dispar-
ity map obtained through rectification to depth map by (1).
The results of (a), (b), and (c) in the figures are obtained by
applying accelerated belief propagation (BPA) [22], synchro-
nous belief propagation (BPS) [22], and CSBP. The results

Fig. 7 Initial depth and occlusion map obtained by the proposed method in the parallel camera array. a Original image. b Initial depth map. c
Result of occlusion detection
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Fig. 8 Initial depth and occlusion map obtained by the proposed method in the arc camera array. a Original image. b Initial depth map. c Result
of occlusion detection

Fig. 9 Depth map comparison of Newspaper. a BPA. b BPS. c CSBP. d Robert’s method. e Proposed method
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Fig. 10 Depth map comparison of Café. a BPA. b BPS. c CSBP. d Robert’s method. e Proposed method

Fig. 11 Depth map comparison of Fitness1. a BPA. b BPS. c CSBP. d Robert’s method. e Proposed method

of (d) in the figures are obtained using the theory based
on Robert’s approach [19]. The approach does not apply
image rectification. Since the conventional methods were
adapted to fit our framework including the depth refinement
process, their results are improved compared to their original
results.

In the parallel camera array, image rectification consid-
erably enhances depth accuracy. Nevertheless, the proposed
method without image rectification generates high-quality
results as well.

In the arc camera array, some parts of the conventional
results lose information, implying inaccuracy. On the other
hand, depth values of the whole region are estimated in the
proposed results.

In order to evaluate the performance of the proposed
method objectively, we applied view synthesis and calcu-
lated PSNR values of the synthesized views for our method
and the conventional methods. Tables 2 and 3 represent
comparisons of their performances in the parallel and arc
arrays.
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Fig. 12 Depth map comparison of Fitness2. a BPA. b BPS. c CSBP. d Robert’s method. e Proposed method

Fig. 13 Depth map comparison of Friends. a BPA. b BPS. c CSBP. d Robert’s method. e Proposed method

Table 2 PSNR comparison of view synthesis result in the parallel array
(dB)

BPA BPS CSBP Robert’s
method

Proposed
method

Newspaper 28.59 29.14 28.37 27.98 29.64

Cafe 32.25 31.23 32.21 32.45 33.13

Average PSNR 30.42 30.19 30.29 30.22 31.39

Table 3 PSNR comparison of view synthesis result in the arc array
(dB)

BPA BPS CSBP Robert’s
method

Proposed
method

Fitness1 20.51 20.55 20.23 31.43 32.73

Fitness2 20.17 20.08 19.83 31.33 32.44

Friends 18.55 18.54 18.39 30.68 31.11

Average PSNR 19.74 19.72 19.48 31.15 32.09
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Fig. 14 Parts of view synthesis results near occlusion. a BPA. b BPS. c CSBP. d Robert’s. e Proposed method

Table 4 Runtime comparison (sec.)

BPA BPS CSBP Proposed
method

Newspaper (1,024 × 768) 9,357 21,965 6,622 14,200

Café (1,920 × 1,080) 183,319 611,021 71,580 37,303

Fitness1 (1,920 × 1,080) 52,588 170,914 17,457 37,156

Fitness2 (1,920 × 1,080) 108,589 339,006 21,035 37,448

Friends (1,920 × 1,080) 103,257 329,059 20,801 37,202

Average 91,422 29,4393 27,499 32,661

From the objective evaluation, the synthesis qualities of
all methods are similar in the parallel camera array. How-
ever, the proposed method produces superior accurate results
compared to the conventional methods with image rectifica-
tion in the arc array. Furthermore, occlusion handling of the
proposed method provided better performance compared to
Robert’s method.

Figure 14 exhibits parts of view synthesis results. The
results of Fig. 14 demonstrate that the proposed method
improves near occlusion regions regardless of camera arrange-
ments.

Processing time comparison of the conventional and pro-
posed methods is presented in Table 4. Experiments were
conducted on a 2.40 GHz CPU processor with a 48 GB RAM.
The runtime of the proposed method depends on only image
resolution. Thus, runtimes of all images are similar except
for Newspaper in the proposed method. On the other hand,
runtimes of the conventional methods depend not only on
image resolution but also disparity range. While the proposed

method had the second fastest depth estimation on average,
the performance was the highest.

Table 5 shows the processing time for the main steps of
the proposed method. From Table 5, we recognize that initial
depth extraction consumes most of the processing time. The
other steps are for depth map quality improvement, while
their processing time is relatively minimal.

The proposed method allows for generation of accurate
depth values without image rectification regardless of any
camera arrays. Therefore, our method effectively reduces
restrictions in camera settings prior to image capturing.

5 Conclusion

In this paper, we proposed a depth map acquisition method
which eliminates drawbacks of conventional algorithms for
practicality. In general, stereo matching through image recti-
fication generates efficient results in aspects of accuracy and
complexity. However, the use of image rectification is prob-
lematic, producing image distortion in the arc array. Thus,
the proposed method leaves out the transformation process of
disparity information obtained through image rectification;
rather, a direct depth acquirement method using an epipo-
lar constraint is applied. Such process increases the prob-
ability of obtaining reliable depth information in the whole
image region. Furthermore, we improved the depth map qual-
ity through occlusion handling. Consequently, our method
generated more stable results than the conventional meth-
ods in several arrays except the parallel array. Therefore, our
method can be beneficial in 3D image production.
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Table 5 Stepwise computation
time of the proposed method
(sec.)

Initial depth
extraction

Occlusion
detection

Occlusion
filling

Post-processing Total process-
ing time

Newspaper (1,024 × 768) 13,863 76 32 228 14,200

Café (1,920 × 1,080) 36,740 204 58 302 37,303

Fitness1 (1,920 × 1,080) 36,692 202 44 217 37,156

Fitness2 (1,920 × 1,080) 36,883 203 41 320 37,448

Friends (1,920 × 1,080) 36,453 202 93 454 37,202

Average ratio (%) 98.36 0.54 0.16 0.93 100
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