
Eye Gaze Correction for Video Conferencing
Using Kinect v2

Eunsang Ko, Woo-Seok Jang, and Yo-Sung Ho(&)

School of Information and Communications,
Gwangju Institute of Science and Technology (GIST),

123 Cheomdangwagi-ro, Buk-gu, Gwangju 500-712, Republic of Korea
{esko,jws,hoyo}@gist.ac.kr

Abstract. In video conferencing, eye gaze correction is beneficial for effective
communication. In this era, video conferencing at homes using laptops is
straightforward. In this paper, we propose an eye gaze correction method with a
low-cost simple setup using Kinect v2. Our method detects an ellipse that
connects edge points of the face after identifying several feature points within
the face using Kinect v2 SDK. Then, we apply a 3D affine transform that allows
eye gaze correction using camera space points that are acquired from depth
information. Thus, in the preprocessing step, an ellipse model should be
extracted when the user gazes the camera and display, respectively. Also, we fill
holes that are caused by the affine transform using color inpainting. As a result,
we produced a natural eye gaze-corrected image in real-time.

Keywords: Eye gaze correction � Eye contact � Video conferencing � Kinect
v2

1 Introduction

When we are talking with other people, eye contact provides important information.
Eye contact is looking at each other’s eyes at the same time. By contacting other’s
eyes, we can guess what they are thinking, or whether they are interested. Thus, eye
contact is significant in video conferencing. Video conferencing is one of telecom-
munication technologies which allows people communicate in two or more locations
simultaneous video transmission. In these days, as the telecommunication technologies
have grown, many people use the video conferencing in their homes as well as work
places. In particular, people who is personal user use free video conferencing program
such as Skype using their laptop or webcam. However, general video conferencing
system occurs lack of eye contact due to the disparity between the locations of the
subject and the camera [1]. These lack of eye contact cause unnatural communication
and negative signs to other users.

For solving the lack of eye contact, various eye gaze correction methods have been
proposed. One method is a remote collaboration system based on a semi-transparent
see-through display. This method creates an experience where local and remote users
are seemingly separated only by a vertical sheet of glass [2]. However, this method
cannot be widely used due to expensive customized hardware. In this paper,

© Springer International Publishing Switzerland 2015
Y.-S. Ho et al. (Eds.): PCM 2015, Part II, LNCS 9315, pp. 571–578, 2015.
DOI: 10.1007/978-3-319-24078-7_58



we propose an eye gaze correction method using Kinect v2. The proposed method can
be used cost-efficient and simple.

The proposed method bases a gaze correction approach using a single Kinect v1
[1]. Kinect v1 is composed of a color camera and a depth camera. They produce images
at 640 × 480 resolution. However, the depth image of Kinect v1 is inaccurate with
silhouette of the color image due to structure of Kinect v1. Thus, Kuster’s method
applies smoothing and filling holes on the depth image using Laplacian smoothing.
Then, they make a novel view where the gaze is corrected. This is accomplished by
applying a rigid transform that allows eye gaze correction. A matrix of the rigid
transform is computed only once during the calibration stage. Next, they extract a
user’s face to track facial feature points in the original color image. They compute 66
feature points along the chin, nose, eyes and eyebrows. Then, they apply a seam
optimization that is an optimal stencil to cut the face from a transformed image using
the feature points. As a result, they generate a natural result of eye gaze correction by
extending the seam of face by 5–10 pixels. Also, they solve a problem of flickering
artifacts in a sequence result of eye gaze correction by optimizing the face tracker
vertices. Their method runs at about 20 frames per second (fps) on a consumer
computer.

2 Proposed Method

2.1 System Design

We use 27 inches display monitor and Kinect v2. Kinect v2 is combined color camera
with depth camera. In Fig. 1(a), the color camera is on the left of Kinect v2, and the
depth camera is on the center of Kinect v2 [3]. As we use depth information for eye
gaze correction, we align the depth camera with center of the display monitor. Then we
set Kinect v2 on the bottom of the display monitor. And, we raise an angle of Kinect v2
to face to the user’s face for effective eye gaze correction, but the user’s spine must be
shown in the color image for face detection using Kinect v2 SDK. Thus, moderate the
angle of Kinect v2 and distance between the users and Kinect v2 are required when
the user sets the proposed system. Figure 1(b) displays an example of the proposed eye
gaze correction system configuration.

Fig. 1. Kinect v2 and system configuration

572 E. Ko et al.



2.2 Preprocessing

Preprocessing comprises four steps: down-sampling a color image, detecting face
feature points, estimating a 3D affine transform matrix that allows eye gaze correction,
and creating face mask that is applied 3D affine transform. Although the preprocessing
steps are many, some are repeatedly processed each frames, the others take only once in
a few seconds by users.

The color camera of Kinect v2 has a resolution of 1920 × 1080 pixels, and the
depth camera has a resolution of 512 × 424 pixels. For mapping the color image to
depth information, we down-sample the color image using Kinect v2 SDK. We pro-
duce eye gaze-corrected image using the down-sampled color image. Thus, the eye
gaze-corrected image has a resolution of 512 × 424 pixels. Then, we limit depth value
between 450 and 900 for reducing depth noise and subtracting background. The depth
value of Kinect v2 means a distance between the object and the camera. The depth
camera of Kinect v2 can capture the depth value from 450 mm. Figure 2(a) and
(b) shows a real-depth map and the down-sampled color image, respectively.

Fig. 2. Depth map and down-sampled color image of Kinect v2

Fig. 3. Face feature point detection using Kinect v2 SDK

Eye Gaze Correction for Video Conferencing Using Kinect v2 573



Second is the detecting face feature points. For detecting the face feature points in
Kinect v2 SDK, it needs body tracking data. Thus, the user’s upper body like head,
neck, shoulder and spine must be shown in field of view of Kinect v2 for detecting
skeleton data of body. Once skeleton data is detected, 1347 points of face feature are
tracked if face is in the field of view of Kinect v2. And, once tracking of the face feature
points are started, Kinect v2 continuously tracks the face feature points in the color
image. The face feature points are represented with camera space point. We can display
the face feature points on the down-sampled color image by converting camera space
point to depth image point using Kinect v2 SDK. Figure 3(a) exhibits a result of
detected 1347 points of face feature. However, most of face feature points are con-
vergent in the user’s eye, nose and mouth. Thus, we sample 10 points in the 1347
points of face feature for decreasing complexity and improving accuracy of eye gaze
correction. Figure 3(b) shows the sampled 10 points in the user’s forehead, cheek bone,
jaw and chin.

Third, for estimating the matrix of 3D affine transform, we need the face feature
points of two models when the user gazes the camera and display, respectively.
Figure 4(a) and (b) display an example image when the user gazes the camera and
display, respectively. Thus, we store couple of 10 points of camera space that are
camera model and display model, respectively. Then, we estimate the optimal matrix of
3D affine transform that converts the display model to the camera model using the

Fig. 4. An example image when the user gazes the camera and display

Fig. 5. An example image of fit ellipse and created mask

574 E. Ko et al.



random sample consensus (RANSAC) algorithm for eliminating outliers. We can get
converted camera space points by multiplying the matrix of 3D affine transform by
original camera space points.

Finally, we create a mask that is applied eye gaze correction using the matrix of 3D
affine transform. The mask is ellipse area that connects the sampled 10 face feature
points. For finding an optimal ellipse model using the 10 face feature points, we use
ellipse fitting function within OpenCV that algorithm [Fitzgibbon95] is used [4, 5].
The mask can be largely changed by coordinates of the sampled face feature points in
the user’s forehead, cheek bone, jaw and chin, respectively. Thus, the users can adjust
the coordinates of the face feature points within Kinect v2 SDK to generate the optimal
ellipse mask. Then, we draw the ellipse mask on an empty black image using a simple
OpenCV flag [6]. Figure 5(a) and (b) exhibit an example image of fitting ellipse and
creating the filled ellipse mask.

2.3 Eye Gaze Correction

The proposed eye gaze correction method converts a camera space point of Kinect v2.
X, Y, and Z of the camera space point means yaw, pitch, and depth, respectively. Thus,
we have to change the Y value of the camera space point to make eye gaze correction.
Figure 6(a) and (b) simulate a face model that is original model and decreased model by
0.1 the Y value of the camera space point, respectively. The matrix of 3D affine
transform that we estimated in the processing step allows eye gaze correction by
changing the camera space point. The Y value of the camera space point is more
changed than the X or Z value. Equation 1 shows the changing camera space point by
multiplying the matrix of 3D affine transform by original camera space point. The
matrix of 3D affine transform is 3 by 4, m means an element of the transform matrix.
The X, Y, and Z denote the original camera space point, and the X`, Y`, and Z` represent
the converted camera space point. When multiplying the matrix by the original camera
space point, we make the original camera space point to a homogeneous matrix.

Fig. 6. Simulation result of eye gaze correction

Eye Gaze Correction for Video Conferencing Using Kinect v2 575



X 0

Y 0

Z 0

2
4

3
5 ¼

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

2
4

3
5

X
Y
Z
1

2
664

3
775 ð1Þ

To apply eye gaze correction, we convert a depth point that is in the face mask to a
camera space point using Kinect v2 SDK. The camera space point can be converted
using a pair both the depth image point and depth value of the depth point. This camera
space point is corrected to make eye contact using the 3D affine transform. The cor-
rected camera space point is converted to depth image point. Thus, y coordinates of the
depth point are increased by depth value of the depth point.

2.4 Color Inpainting

Figure 7(a) shows an example of eye gaze correction result. There are many holes due
to a pixel rounding error when applying the 3D affine transform. Also, there is one
large hole in the user’s forehead that represents eye gaze correction is applied well.
Figure 7(b) displays an error map of the result of eye gaze correction. For removing the
error, we fill hole using color inpainting using [Telea04] method [7]. However, the
large hole causes an unnatural result after color inpainting. Thus, we create a color
inpainting mask by updating the face mask. Figure 7(c) and (d) represent the updated
color inpainting mask and a result of color inpainting, respectively.

Fig. 7. A result of color inpainting

576 E. Ko et al.



3 Experiment Result

To evaluate our proposed eye gaze correction method, we capture several results of eye
gaze correction when the user watches around the monitor. Figure 8(a)–(c) display the
results of eye gaze correction, respectively. Figure 8(a) is a result of eye gaze correction
when the user watches center of the monitor, and Fig. 8(b)–(c) are results of eye gaze
correction when the user watches left and right of the monitor, respectively. As
watching the results, there are three problems. First, there is a depth hole in area of the
user’s glasses due to reflected light. Second, there is boundary noise due to
time-of-flight (ToF) depth error. The boundary noise occurs while the color image is

Fig. 8. Experiment result of eye gaze correction

Eye Gaze Correction for Video Conferencing Using Kinect v2 577



down-sampled in the processing step. Finally, a result of eye gaze correction is out of
shape if the user’s depth value is largely changed like shifting the user’s position.

We processed the proposed eye gaze correction method on a desktop computer that
uses a CPU: Intel Core i7 4960X @ 3.6 GHz. To achieve processing of the eye gaze
correction method in real-time, we handled a multi-thread scheduling when capturing
the color and depth image, down-sampling the color image, applying eye gaze cor-
rection. As a result, a result of eye gaze-corrected is generated at a rate of 28 fps.

4 Conclusion

In this paper, we proposed an eye gaze correction method using Kinect v2. We
down-sampled a color image and detected face feature points using its SDK. Then, we
estimated the matrix of 3D affine transform that allows eye gaze correction by means of
a face model as the user gazes the camera and display, respectively. Finally, we applied
the 3D affine transform and color inpainting within the face mask. As a result, we
acquired an eye gaze-corrected natural image in real-time. There exists depth holes and
boundary noise due to the limitation of Kinect v2 depth camera. Hence, if we process a
depth up-sampling using high-performance computer and GPU processing, we can
generate a result of eye gaze-corrected at 1920 × 1080 resolution as well as solve depth
holes and boundary noise of the result image.

Acknowledgement. This research was supported by Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT &
Future Planning (No. 2011-0030079)

References

1. Kuster, C., Popa, T., Bazin, J.C., Gotsman, C., Gross, M.: Gaze correction for home video
conferencing. ACM Trans. Graphics 31(6), 1–6 (2012)

2. Tan, K.H., Robinson, I.N., Culbertson, B., Apostolopoulos, J.: ConnectBoard: Enabling
Genuine Eye Contact and Accurate Gaze in Remote Collaboration. IEEE Trans. Multimedia
13(3), 466–473 (2011)

3. http://www.microsoftstore.com/store/mssg/en_SG/pdp/Kinect-for-Windows-v2-Sensor/productID.
299057000

4. Fitzgibbon, A.W., Fisher, R.B.: A Buyer’s guide to conic fitting. In: Proceedings of the British
Machine Vision Conference (BMVC), Birmingham, England, vol. 2, pp. 513–522 (1995)

5. http://docs.opencv.org/modules/imgproc/doc/structural_analysis_and_shape_descriptors.
html?highlight=fitellipse#fitellipse

6. http://docs.opencv.org/modules/core/doc/drawing_functions.html?highlight=ellipse#ellipse
7. Telea, A.: An image inpainting technique based on the fast marching method. J. Graphics,

GPU, Game Tools 9(1), 25–36 (2004)

578 E. Ko et al.

http://www.microsoftstore.com/store/mssg/en_SG/pdp/Kinect-for-Windows-v2-Sensor/productID.299057000
http://www.microsoftstore.com/store/mssg/en_SG/pdp/Kinect-for-Windows-v2-Sensor/productID.299057000
http://docs.opencv.org/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html%3fhighlight%3dfitellipse%23fitellipse
http://docs.opencv.org/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html%3fhighlight%3dfitellipse%23fitellipse
http://docs.opencv.org/modules/core/doc/drawing_functions.html%3fhighlight%3dellipse%23ellipse

	Eye Gaze Correction for Video Conferencing Using Kinect v2
	Abstract
	1 Introduction
	2 Proposed Method
	2.1 System Design
	2.2 Preprocessing
	2.3 Eye Gaze Correction
	2.4 Color Inpainting

	3 Experiment Result
	4 Conclusion
	Acknowledgement
	References


