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With the great success in three-dimensional (3D) movies, a lot of 3D content have been generated. Depth
information is one of the important elements in 3D content generation. Stereo matching methods obtain
depth information using the characteristic of binocular disparity. These methods find corresponding
points between two images which have different viewpoints to calculate the disparity value. However,
these methods have difficulties computing accurate disparity values in the textureless region. Smeared
pixels near the edge region also make difficult for the stereo matching. In this paper, we propose a pixel
based cost computation for the cross-scale stereo matching using the distance transform to improve
these problems. In addition, the disparity error detection and correction methods are also proposed as
a post-processing step. As a result, we obtain the enhanced disparity map which is robust to the texture-
less region and the edge region.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction

In these days, 3D content is used in various fields such as 3D
films, medical images, and 3D games. Depth information is an
important requisite for 3D content generation. There are several
ways to acquire depth information from the target image. Depth
measurement using a depth camera is one of the methods to get
the depth value from the object [1]. This method uses infrared rays
to measure the distance between the depth camera and the object.
Therefore, it can acquire the depth value of the object quickly and
accurately. However, the depth camera is vulnerable to the outside
because of sunlight. It has an effect on infrared rays of the depth
camera.

On the other hand, a depth estimation from captured scenes is
not restricted to the place. One of the ways to estimate the depth
value from captured scenes is using stereo images. Most of 3D
movies use stereo images to generate a 3D effect. These images
are acquired by a stereo camera which captures scenes having
two different viewpoints. Both images have same objects each
other. Each object in stereo images has a disparity value. This value
is determined by the distance between the camera and the object.
If the object is located near the camera, it has a large disparity
value. If the object is far from the camera, it has a small disparity
value. For this reason, stereo images allow people to feel the 3D
effect.

Stereo matching methods are typical ways to get depth infor-
mation from stereo images. These methods acquire the disparity
value of each pixel in both images. The disparity value is calculated
by two corresponding points in stereo images. In order to find the
disparity value easily, the image rectification is applied to captured
images as a pre-processing algorithm [2]. Therefore, two corre-
sponding points in both rectified images are searched in the same
scan line by the epipolar geometry. The result of stereo matching
methods is represented as a disparity map. There are two kinds
of stereo matching methods. One is a local method and the other
one is a global method.

The local method calculates a matching cost of each pixel in
stereo images to estimate the optimal disparity value. The match-
ing cost is computed by using similarity measures such as sum of
absolute differences (SAD), sum of squared differences (SSD), and
normalized cross correlation (NCC). This method considers a lim-
ited number of pixels in a specific region to acquire the disparity
value of one pixel. Therefore, the local method generally has fast
matching results. However, it usually has lower disparity accuracy
in the disparity estimation than that of the global method.

On the other hand, the global method considers whole pixels in
the image to determine the disparity value of one pixel. It uses an
energy function which is based on Markov random field (MRF) to
compute the energy between two corresponding points. The
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energy function is composed of a data term and a smoothness
term. The data term calculates the correlation between two corre-
sponding points using similarity measures. This term is similar to
the matching cost computation in the local method. The smooth-
ness term checks the disparity consistency among neighboring pix-
els. The energy function is optimized by several optimization
concepts such as belief propagation and graph cuts [3,4]. The glo-
bal method generally estimates more accurate disparity values
than the local method. However, this method is generally slower
than the local method.

Both stereo matching methods have problems in the textureless
region. Since this region does not have any textures, it is very dif-
ficult to find corresponding points in stereo images. For this reason,
the stereo matching in this region is problematic. Even though the
global method estimates more accurate disparity values than the
local method in the textureless region, these problems still remain
to be solved as homework yet.

In this paper, we propose a pixel based cost computation using
the distance transform to improve the accuracy of disparity values
in the textureless region. The distance transform gives the distance
value from the edge region to the pixel [5]. Therefore, pixels in the
textureless region have specific values by using this transform. This
transform also gives a large weighting on the pixel in the edge
region. Thus, this transform helps to estimate more accurate dis-
parity value in both regions. Matching costs of the proposed
method are aggregated by a cross-scale cost aggregation method
[6]. As a result, we acquire an initial disparity map. In addition to
this method, we also apply a disparity error correction algorithm
to remove remaining disparity errors in the initial disparity map.

This paper is organized as follows. In Section 2, we introduce a
disparity accuracy problem in the stereo matching. We also intro-
duce a conventional method which is relevant to this problem. In
Section 3, we explain a problem of the conventional algorithm
and show a proposed method which has better experiment results
than the conventional algorithm. After that, the experiment results
are analyzed in Section 4 and we conclude this paper in Section 5.

2. Problem statement

2.1. Disparity accuracy problem in textureless region

In stereo matching methods, a feature detection is an essential
step to estimate disparity values between two corresponding
points in stereo images. The result of feature detection is affected
by the characteristic of regions in the image. The textureless region
in the captured scene does not have any features. Therefore, it
causes matching ambiguities in the stereo matching. Fig. 1(a)
shows the textureless region in the image. Fig. 1(b) shows disparity
errors in that region.

In the local method, there is a pixel based stereo matching
method to search the matching pixel. This matching method gen-
erally has the matching ambiguity problem. Since this method
(a)
Fig. 1. Stereo matching in the textureless region. (a) The textureless regio
checks the pixel similarity in stereo images using only one pixel,
a lot of similar pixels may be existed in the same scan line. For this
reason, it is very weak for the textureless region and even some
textured regions. Thus, the pixel based matching method generates
noises in the disparity map. Fig. 2 shows the matching ambiguity
problem of the pixel based matching.

In order to avoid this problem, the local method generally uses a
window based matching. This matching method uses the window
to find the corresponding pixel in stereo images. It checks the sim-
ilarity of all pixels in the window. Hence, it usually finds more
accurate disparity values in most regions than the pixel based
matching method. The result of this method has different qualities
depending on the window size. The larger window size is used, the
more accurate disparity values in the textureless region are esti-
mated. However, using the large sized window causes inaccurate
discontinuity depth values in the edge region.

On the contrary, the global method has great matching results
in many regions including the textureless region. However, this
method sometimes has a smudged effect near the edge region
because of the smoothness term. The smoothness term checks
the disparity consistency among neighboring pixels. If the disparity
value of current pixel has a large difference with that of neighbor-
ing pixel, then this term gives a penalty to the energy function to
avoid choosing this disparity value.

2.2. Relevant work

The cross-scale cost aggregation method was proposed by
Zheng et al. to improve the disparity accuracy in the textureless
region [6]. This method uses multi-scale images to aggregate
matching costs among different scale images. It bases on a
coarse-to-fine (CTF) strategy [7]. In the process of stereo matching,
there are cost noises in the cost computation result. All regions in
stereo images have cost noises because of a mismatching problem.
Especially, the textureless region has a lot of cost noises. These cost
noises lead to estimate inaccurate disparity values in the disparity
map.

The low-scale image usually has less cost noises than those of
the large-scale image. Since the low-scale image has a lower reso-
lution than the large-scale image, there are few pixel candidates
which are used to the similarity measure. Therefore, the low-
scale image is more likely to search exact corresponding points
in the textureless region than the large-scale image. The work of
Zheng et al. uses this characteristic to relive mismatching problem
in that region.

In Zheng’s method, the consistency checking is used to aggre-
gate refined matching costs [6]. There are two types of consisten-
cies. First one is an intra-scale cost consistency and the other one
is a cross-scale cost consistency. The intra-scale cost consistency
compares the matching cost of the current pixel with that of neigh-
boring pixels to reduce the cost noise. In this consistency checking
step, the least square optimization is used to find the optimal
(b) 
n in the captured scene. (b) Disparity errors in the textureless region.



Fig. 2. Matching ambiguity problem of the pixel based matching.
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refined cost. Based on the intra-scale cost consistency step, match-
ing costs among different scale images are also refined using the
cross-scale cost consistency. Both cost consistency checking steps
change the cost to the refined cost. More detail things of this
method are explained in Section 3.

In the cross-scale cost aggregation method [6], many ways of
the cost computation and aggregation methods are used [8–10].
In terms of the cost computation, Zheng et al. used a pixel based
cost function as an equation of the initial matching. This cost func-
tion measures the pixel similarity using color information and gra-
dient information [9]. The initial matching cost C is formulated as

Cði;dÞ ¼ ð1� aÞ �minðkILðxi;yiÞ � IRðxi � d;yiÞk;s1Þ
þa �minðkrxILðxi;yiÞ �rxIRðxi � d;yiÞk;s2Þ;

ð1Þ

where i is a position of the current pixel and d is a disparity candi-
date. I and rxI are color information and gradient information,
respectively. The gradient value is calculated in the x direction. In
order to control the maximum cost value, s1 and s2 are used. The
ratio between color information and gradient information is deter-
mined by a weighting value a.

3. Proposed method

3.1. Problems of conventional method

The conventional cross-scale cost aggregation method using the
pixel based cost computation [6] has two problems: the matching
ambiguity problem and the edge preserving problem. The conven-
tional method has quite accurate disparity values in the textureless
region. However, the matching ambiguity problem in the conven-
tional method still exists because of the equation of initial match-
ing. The initial cost function in the conventional method bases on
the pixel-wise matching. This function computes the matching cost
quickly and simply. It is also robust to the radiometric variation of
stereo images. However, this cost function still has mismatching
problem in the textureless region.

The difficulty of the stereo matching in the textureless region of
color image is a well-known problem. The gradient image as well
as the color image also have matching ambiguity in the same
region. Fig. 3 shows the matching ambiguity problem in the gradi-
ent image. In Fig. 3, the corresponding point of the current pixel
should be the pixel in a circle according to the similarity measure.
However, that pixel is not the real corresponding pixel. This prob-
lem can cause matching errors in the textureless region. Fig. 4 rep-
resents the disparity map of the conventional method which uses
the pixel based cost function for the cross-scale cost aggregation.
In Fig. 4, there are disparity errors in the textureless region. There-
fore, the pixel based matching using both information still has
room for improvement in the textureless region.

The other problem of the conventional method is the edge pre-
serving problem. The cross-scale cost aggregation for the stereo
matching [6] uses a lot of images which have different scale levels.
Since this method reduces the resolution of the image to estimate
accurate disparity values in the textureless regions, it is sometimes
difficult to preserve textured and edge regions when the image res-
olution is too small. Fig. 5 shows disparity errors in textured
regions.

In order to improve these problems, we propose a new term for
the pixel based cost computation using the distance transform. In
addition, we also propose a disparity error detection and correction
method to complement remaining disparity errors in occlusion
regions or other regions. The overall scheme of the proposed
method is depicted in Fig. 6.

First, the initial matching cost is calculated using the distance
transform. After that, matching costs are aggregated by the cross-
scale cost aggregation method to acquire initial disparity maps
[6]. In order to enhance initial disparity maps, we also apply the
disparity error correction step as a post-processing algorithm.
Finally, we acquire optimal disparity maps.

3.2. Initial cost computation using distance transform

The matching ambiguity problem in the textureless region is
caused by many similar pixels. They have no distinguishable fea-
tures each other. A motivation of the proposed method is inspired
by giving specific values to pixels in the textureless region. The dis-
tance transform [5] calculates the pixel distance from the edge
region. Therefore, each pixel in the textureless region can have
the specific distance value by using this transform. A distance
transformed map (DT map) is the result of the distance transform.
In order to acquire the DT map, the color image is transformed to
an edge image using the edge detection. After that, a kernel of
the distance transform is applied to the edge image. The kernel
equation is defined by

rki;j ¼ min

rk�1
i�1;j�1 þ b rk�1

i;j�1 þ a rk�1
iþ1;j�1 þ b

rk�1
i�1;j þ a rk�1

i;j rk�1
iþ1;j þ a

rk�1
i�1;jþ1 þ b rk�1

i;jþ1 þ a rk�1
iþ1;jþ1 þ b

2
664

3
775; ð2Þ

where rki;j represents a DT value at iteration k. The minimum DT
value in the previous iteration step is determined as the current
DT value. In order to control the strength of DT value, a and b are
used as weighting parameters. Fig. 7 shows the process of distance
transform. In Fig. 7(a), there are edge pixels which have zero values.
Fig. 7(b) is a transformed result of the first iteration. In Fig. 7(b), pix-
els are close to the edge region have small DT values. On the con-
trary, if pixels are far from the edge, then they have large DT values.

Jang et al. proposed the edge preserving method using the dis-
tance transform [11]. This method uses DT values in the DT map as
weighting scales of the matching cost function. It gives the
smallest weighting scale to the edge region and gives the large
weighting scale to non-edge regions. Therefore, this method



Fig. 3. Matching ambiguity problem in gradient images.

Fig. 4. Disparity map of the conventional method.

Fig. 5. Disparity errors in the texture region.

Y.-J. Chang, Y.-S. Ho / J. Vis. Commun. Image R. 40 (2016) 118–127 121
preserves the edge region in the disparity map by emphasizing
non-edge regions.

In terms of our proposed method, we use the DT value as a new
cost term in the pixel based cost function to improve the matching
accuracy in the textureless region. Pixels of color and gradient
images have similar pixel values in the textureless region. How-
ever, DT values in that region have different pixel values depending
on the distance from the edge region. Hence, these values can help
to estimate more accurate disparity values in the textureless
region. The distance transform is also useful to the edge preserving
problem of the conventional method. Since the DT map bases on
the edge image, DT values help the stereo matching in the low
scale image to find the accurate corresponding point near the edge
boundary. Therefore, using the DT value in the stereo matching has
a better edge preserving in the disparity map than that of the con-
ventional method.
In order to use the DT value as the new cost term, the kernel of
the distance transform is modified as

rki;j ¼ min rk�1
i�1;j þ a rk�1

i;j rk�1
iþ1;j þ a

h i
; ð3Þ

where a controls the strength of DT value. In (3), the DT value is cal-
culated in the x-direction. The conventional distance transform con-
siders eight different directions to calculate the DT value. However,
stereo matching methods usually use rectified images. These
images make possible to search the corresponding point in the same
scan line. Therefore, it is enough to compute the DT value in the x
direction. Fig. 8 shows the result of the modified DT. We also apply
the Canny edge detection to acquire the edge image [12].

We define a DT term based on the modified DT map. The DT
term is added to the conventional pixel based cost function.
The conventional cost function means the equation using color



Fig. 6. The overall scheme of the proposed method.
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information and gradient information [9]. A new cost function C0 is
represented by

C 0ði; dÞ ¼a �minðkILðxi; yiÞ � IRðxi � d; yiÞk; s1Þ
þb �minðkrxILðxi; yiÞ � rxIRðxi � d; yiÞk; s2Þ
þc � kdtLðxi; yiÞ � dtRðxi � d; yiÞk;

ð4Þ

where dt means the DT value in the modified DT map. a, b, and c rep-
resent weighting values. We complement the matching ambiguity
problem of the conventional cost function by adding the DT term. In
this paper, we use this equation as an initial matching cost function.

A pixel based cost function using the distance transform was
already by Chang et al. [13]. They proposed the same cost function
which uses the DT value as the third cost term. In (4), Chang’s
method used constant weighting values to compute the matching
cost. However, two corresponding points in left and right DT maps
sometimes do not have same DT values. This problem is caused by
two elements: the occlusion region, and the slanted object. Occlu-
sion regions in stereo images have different edge detection results
each other. Therefore, these results have an effect on both DT maps
to have different DT values.
Fig. 7. Process of the distance transf
The slanted object in the captured scene also generates different
DT values in both DT maps. Even though there are same slanted
objects in stereo images, disparity values inside these objects are
different because of the characteristic of binocular disparity. How-
ever, the distance transform calculates DT values inside these
objects regardless of this characteristic. Therefore, these elements
reduce effects of the DT term in the matching result. For this rea-
son, we propose using adaptive weighting values instead of using
constant weighting values. Adaptive weighting values are formu-
lated as

a ¼ 1� k2 � e�
dt
r2

� �
� ð1� k1Þ;

b ¼ 1� k2 � e�
dt
r2

� �
� k1;

c ¼ k2 � e�
dt
r2 ;

ð5Þ

where k1 and k2 are regulation parameters. In (5), where dt repre-
sents the DT value in the DT map. Therefore, we can give the large
weighting value to the DT term, if the current pixel is near the edge
region. These adaptive weighting values restrain the discordance
problem of DT values between stereo DT maps.

Distance information can also be used in motion and flow
detection [27,28]. Since this information uses the distance trans-
form, pixels near the edge region can be weighted. For this reason,
if both color and distance information is used for the matching
cost, then we can find the flow or the motion of objects easily.
However, if motion and flow are too large, the distance transform
may give certain incorrect information about both matching tasks.
Therefore, the distance information near the edge region should be
used for the matching.

3.3. Cross-scale cost aggregation

In order to aggregate initial matching costs, we apply the cross-
scale cost aggregation method [6]. This method checks the intra-
scale cost consistency and the cross-scale cost consistency to refine
cost noises. The refined matching cost of the intra-scale is obtained
by using a weighted least square (WLS) optimization. It is defined
by
orm. (a) Initialization. (b) k = 1.



Fig. 8. Result image of modified DT. (a) Left image. (b) Right image.
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eC 0ði; dÞ ¼ argmin
s

1
Zi

X
j2Ni

Kði; jÞks� C 0ðj;dÞk2; ð6Þ

where eC 0 is the refined matching cost and Ni is a set of neighboring
pixels in the refinement kernel K . In this paper, we use the kernel of
bilateral filter to refine cost noises [14]. In (6), where Zi is a sum of
weighting values in the kernel. This equation is solved by using the
partial differential. The solution of this equation is represented by

eC 0ði; dÞ ¼ 1
Zi

X
j2Ni

Kði; jÞC 0ðj;dÞ; ð7Þ

In (7), the refined matching cost is calculated in a single-scale
image. This cost function is extended for the multi-scale images.
A vector ~m which represents the set of the refined matching costs
in multi-scale levels is defined by

~v ¼ arg min
fslgLl¼0

XL

l¼0

1

Zk
ik

X
jk2N

ik

Kðil; jlÞksl � Clðjl;dlÞk2; ð8Þ

where l represents a scale level and L is the maximum scale level.
This vector set contains refined matching costs which are checked
using the intra-scale cost consistency at each scale level. The refined
matching cost of vector ~m is solved using the same optimization way
with (6). It is formulated as (9).

8l; eC 0lðil;dlÞ ¼ 1

Zl
il

X
jl2N

il

Kðil; jlÞC 0lðjl; dlÞ; ð9Þ

Refined matching costs in (8) and (9) are results of the intra-
scale cost consistency. In order to check the cost consistency
among different scale images, a vector m̂ is formulated as

v̂ ¼ arg min
fslgLl¼0

XL

l¼0

1
Zl
il

X
jl2N

il

Kðil; jlÞksl � Clðjl; dlÞk2

þk
XL

l¼1

ksl � sl�1k2

0
BBBBBBB@

1
CCCCCCCA
; ð10Þ

where k is a constant parameter which controls the strength of con-
sistency checking. The vector m̂ is composed of refined matching
costs which are applied the cross-scale cost consistency. Elements
of this vector can be obtained using the same solution with (8).

From the solution of (10), we can induce the relationship
between ~m and m̂. This relationship is represented by

Av̂ ¼ ~v ; ð11Þ
where A is a ðLþ 1Þ � ðLþ 1Þ tridiagonal matrix. This matrix is com-
posed of the constant parameter k. Therefore, the final refined
matching cost in the finest scale level is defined as follows.

bC0ði0; d0Þ ¼
XL

l¼0

A�1ð0; lÞeClðil;dlÞ; ð12Þ

This cost aggregation method estimates the optimal disparity
value of each pixel in the finest scale level by minimizing the
matching cost in (12).

3.4. Disparity error detection and correction

Stereo matching methods have an occlusion problem because of
different viewpoints in stereo images. Occluded pixels in that
region cannot find their corresponding points in stereo images.
This problem causes disparity errors in the disparity map. Not only
the occlusion problem but also some mismatching problems gen-
erate disparity errors in the result image. In order to detect dispar-
ity errors in the disparity map, the cross checking method was
proposed [15]. This method checks the accordance of disparity val-
ues between two corresponding points in stereo images. If two cor-
responding points have different disparity values, then these two
pixels are regarded as error pixels.

The conventional cross-checking method uses two disparity
maps to detect error pixels. This method finds disparity errors sim-
ply and quickly. However, it sometimes has a low accuracy in the
disparity error detection because this method uses just two dispar-
ity maps of stereo images. If both corresponding points have same
wrong disparity values, the cross checking method cannot detect
these pixels as error pixels. In order to prevent this problem, we
use two error detection steps. First, color images as well as dispar-
ity maps are used to detect error pixels [16]. In this process, we
acquire an initial error map. The error map is a binary image and
it has zero values in the error region. Second, we check the error
consistency between the current pixel and neighboring pixels in
the initial error map to detect remaining error pixels. Therefore,
we can detect more accurate disparity errors than the conventional
cross-checking method.

In order to acquire the initial error map, we calculate the
matching error of color pixels after the cross checking method. If
the current pixel does not have the same disparity value with that
of the corresponding point, we define that pixel as an initial error
pixel. If not, that pixel is checked again using the matching error.
The matching error is computed with color pixels. The matching
error M between two color pixels is formulated as
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MðIL; IRðdÞÞ ¼
1
3

P
I2R;G;BjIL � IRðdÞj

255
; ð13Þ

where IRðdÞ represent RGB color values which correspond to color
values IL in the different viewpoint. If two corresponding points of
color images are similar each other, then the matching error closes
to zero. If the matching error of pixel is larger than the threshold,
then we determine that pixel as an initial error pixel.

We also apply the error consistency check to the initial error
map in order to detect remaining disparity errors [16]. This method
calculates the smoothness cost to remove outliers in the error map.
The smoothness cost S is represented by

Sði; jÞ ¼
X
j2Ni

f ðjÞoðiÞ; ð14Þ

where oðiÞ determines whether the current pixel i is the error pixel
or not. f ðjÞ counts the number of error pixels around the current
pixel. The smoothness cost is computed using the initial error
map. Equations of f ðjÞ and oðiÞ are defined by

f ðjÞ ¼ 1; if IE;j ¼ 0
0; otherwise

�
; oðiÞ ¼ 1; if IE;i ¼ 1

0; otherwise

�
; ð15Þ

where IE;i and IE;j represent pixel values of i and j in the error map,
respectively. Therefore, the smoothness cost which is defined by
(14) and (15) counts the number of error pixels around the current
non-error pixel in the initial error map. If the smoothness cost is lar-
ger than the threshold value, then it means that the current non-
error pixel is more likely to be the error pixel. For this reason, we
change this non-error pixel to the error pixel.

The final error map can be obtained using above steps. Fig. 9
describes results of the disparity error detection. Fig. 9(a) is results
of the conventional cross checking method. Fig. 9(b) is results of
the proposed error detection method. As you can see in these fig-
ures, our method detects more error pixels than the conventional
method.

We change detected error pixels in the initial disparity map to
holes which have zero pixel values. After that, we fill those holes
using the disparity error correction method. The proposed dispar-
ity error correction method is inspired by Min et al. [17]. They
applied an iterative support-and-decision process using probabil-
Fig. 9. Error map comparison between the conventional cross checking method and the
disparity error detection.
ity functions to fill holes in the disparity map. In terms of our pro-
posed method, we correct error pixels without the iterative
process. The proposed method finds the most probable disparity
value near the hole.

In order to find the optimal disparity value of the error pixel, we
calculate the hole filling cost H. This cost function is formulated as

Hði; jÞ ¼ kði; jÞoðjÞ; ð16Þ
where k is the probability function using the distance difference and
the color difference. The hole filling cost is calculated using the win-
dow based method. Therefore, neighboring pixels around the cur-
rent error pixel i are used to compute the hole filling cost. The
probability function k is defined by

kði; jÞ ¼ exp �Dði; jÞ
r2

D

� DðIi; IjÞ
r2

I

� �
; ð17Þ

where Dði; jÞ and DðIi; IjÞ are the Euclidean distance of pixel positions
and that of color values, respectively. In (17), the probability func-
tion uses the window kernel of bilateral filter [14].

The optimal disparity value is chosen by the neighboring pixel
in the window. If the neighboring pixel j has the maximum hole
filling cost, then the current hole will be filled by the disparity
value of that neighboring pixel. Therefore, we can correct disparity
errors using (18) which is formulated as

di ¼ argmax
dj

Hði; jÞ; ð18Þ

where di and dj are disparity values of pixel i and j, respectively. The
error pixel is filled by the neighboring disparity value dj.

4. Experimental results

The proposed method was tested using 4 different images:
Teddy, Cones, Tsukuba, and Venus [18]. We also tested 6 test images
in ‘Middlebury 2005’ and 21 test images in ‘Middlebury 2006’
[19,20]. In addition, the KITTI dataset including 10 training images
was used for the implementation [21]. In order to implement the
proposed method, we set parameters first. In (3), we set the control
parameter a to 1. If this parameter is too big, then DT values cannot
proposed disparity error detection method. (a) Cross checking method. (b) Proposed



Fig. 10. Error rate of changes depending on k2.
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fill the textureless region. For this reason, we set small value to the
parameter. In (5), there are some parameters to define the initial
cost function. We set k1 and r to 0.89 and 0.1, respectively. In order
to find the optimal k2, we checked error changes depending on the
value of k2. Fig. 10 shows the error rate of changes for 31 Middle-
bury datasets. In Fig. 10, the error rate is the lowest value when k2
is set to 0.03.

In terms of the conventional pixel based cost function, we set a
to 0.89. In the process of cross-scale cost aggregation, we set the
constant parameter in (1) to 0.3 for Middlebury datasets and 1.0
for KITTI datasets. We also set the maximum scale level L to 5. In
Fig. 11. Result images of the conventional method and the proposed method. (a) Origina
without the disparity error correction. (d) Results of the proposed method with the disp
the disparity detection step, the threshold value of the matching
error M is set to 0.9 and that of the smoothness cost is set to 4.
We make the smoothness cost check eight neighboring pixels
around the current pixel. In order to correct disparity errors, rD

and rI in (17) are set to 17.5 and 100, respectively. Based on these
parameters, we tested the proposed method.

Fig. 11 shows experiment results for four test images (Teddy,
Cones, Tsukuba, Venus). In Fig. 11, the order of the pictures from
top to bottom is as follows: Teddy, Cones, Tsukuba, and Venus. In
Fig. 11(d), the results images show enhanced disparity values than
those of Fig. 11(b). However, it is difficult to distinguish differences
l image. (b) Results of the conventional method. (c) Results of the proposed method
arity error correction. (e) Ground truth.



Fig. 12. Enlarged result images. (a) Disparity error reduction in the textureless region. (b) Disparity error reduction in the textured region.

Table 1
Error rate comparison of the Middlebury datasets in all regions, non-occlusion
regions, and discontinuity regions. The number in this table represents the percentage
of bad pixels.

Algorithm ANCC
[22]

Census
[23]

Intensity +
gradient
[6,9]

Proposed
method
(without error
correction)

Proposed
method
(with error
correction)

MI-31 Nonocc. 19.58 11.99 11.81 11.72 10.79
All 28.71 22.23 21.38 21.12 16.62
Disc. 33.12 26.08 24.21 23.94 22.9

Table 2
Error rate comparison of the KITTI datasets in all regions, non-occlusion regions, and
discontinuity regions. The number in this table represents the percentage of bad
pixels.

Algorithm ANCC
[22]

Census
[23]

Intensity +
gradient
[6,9]

Proposed
method
(without error
correction)

Proposed
method
(with error
correction)

K-10 Nonocc. 42.87 11.43 21.37 20.59 20.07
All 43.98 13.15 22.85 22.05 20.95
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between Fig. 11(b) and (c). Thus, enlarged images of Teddy are
depicted in Fig. 12. In Fig. 12, we can check that the proposed
method estimates disparity values in the textureless region more
accurately than the conventional method. Fig. 12(b) shows
enlarged disparity map in the textured region. The result of pro-
posed method also has a better matching result in the textured
region than the conventional method.

We measured the bad pixel rate (BPR) of result images which
were applied different algorithms including the proposed method.
The BPR checks the error rate of the disparity map. In terms of the
Middlebury datasets, if the disparity difference between the pixel
of the result image and that of the ground truth is larger than 1,
then the pixel in the result image is regarded as an error pixel.
On the other hands, we set the error threshold to 3 for the KITTI
datasets and calculate the error rate using our evaluation program.
Therefore, the BPR makes us compare matching results objectively.
Table 1 shows the BPR comparison of the Middlebury datasets
between the conventional method and the proposed method. In
this table, MI-31 and K-10 represent the results of 31 Middlebury
datasets and 10 KITTI datasets, respectively. We measured the
BPR in all regions, non-occlusion regions, and discontinuity
regions. In order to compare our results with other cost computa-
tion algorithms, ANCC [22], Census [23], intensity + gradient [9]
cost functions are used. The proposed method in this table is not



Table 3
Error rate comparison with other stereo matching algorithms. The proposed method is compared with other stereo matching methods.

Algorithm AdaptAggrDP [24] BitPlaneNLF [25] LCVB-DEM [26] Conventional method [6,9] Proposed method (with error correction)

Teddy Nonocc. 6.79 8.3 9.99 8.71 7.1
All 14.3 13.6 16.3 17.32 13.81
Disc. 16.2 17.1 26.1 21.53 20.03

Cones Nonocc. 5.53 3.68 6.56 6.37 4.42
All 13.2 9.68 13.6 15.98 12.08
Disc. 14.8 9.91 18.2 15.73 11.99

Tsukuba Nonocc. 1.57 1.76 4.49 2.33 2.3
All 3.5 2.33 5.23 2.67 2.6
Disc. 8.27 8.83 21.3 9.71 9.57

Venus Nonocc. 1.53 3.82 1.32 1.3 0.43
All 2.69 4.16 1.67 3.19 1.06
Disc. 12.4 5.65 11.5 4.11 2.9

Average 8.4 7.4 11.4 9.08 7.36
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applied the error correction algorithm. In Table 1, the error rate of
the proposed method has lower error rates compared with other
algorithms [6,9,22,23].

Table 2 shows the error rate comparison result with the KITTI
datasets. 10 stereo pairs were used for the experiment. We also
implemented using other cost functions that are same as the
experiment of the Middlebury datasets. In addition, we also com-
pared our algorithm with other recently stereo matching algo-
rithms in Table 3 [24–26]. In Table 3, four test images were used
to compare the results with other algorithms. The number in
Table 3 represents the percentage of bad pixels.

5. Conclusions

In this paper, we proposed a pixel based cost computation using
the distance transform to improve disparity values in the texture-
less region and the edge region. We added the distance term to the
conventional pixel based cost function which uses color informa-
tion and gradient information. Matching costs are aggregated by
the cross-scale cost aggregation method. In addition, we also used
the disparity error correction method as a post-processing algo-
rithm to enhance the final disparity map. As a result, experiment
results indicated that the proposed method with the post-
processing decreases error rates by 1.72% on average compared
with the conventional method.
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