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Abstract 

 
Occlusion is the key and challenging problem in stereo 

matching, because the results from depth maps are significantly 
influenced by occlusion regions. In this paper, we propose a method 
for occlusion and error regions detection and for efficient hole-
filling based on an energy minimization. First, we implement 
conventional global stereo matching algorithms to estimate depth 
information. Exploiting the result from a stereo matching method, 
we segments the depth map occlusion and error regions into non-
occlusion regions. To detect occlusion and error regions, we model 
an energy function with three constraints such as ordering, 
uniqueness, and color similarity constraints. After labeling the 
occlusion and error regions, we optimize an energy function based 
MRF via dynamic programing. In order to evaluate the performance 
of our proposed method, we measure the percentages of 
mismatching pixels (BPR). And we subjectively compare the results 
of our proposed method with conventional methods. Consequently, 
the proposed method increases the accuracy of depth estimation, 
and experimental results show that the proposed method generates 
more stable depth maps compared to the conventional methods.  

Keywords: occlusion, disparity estimation, stereo matching, hole-
filling, dynamic programming 

1. Introduction 
 
Stereo depth estimation is a widely researched topic in computer 

vision, and it is related to many applications such as 3D movie, 3D 
printing, object detection, and 3D reconstruction. Depth information 
represents distance information between a camera and objects in a 
captured scene. In general, depth information can be obtained by 
some methods such as active depth cameras, passive depth cameras, 
and hybrid depth cameras. Active depth sensor acquires depth 
information with a physical sensor, which emit their own light onto 
the scene, and derive its depth information [1]. Usually, the active 
depth cameras are more effective and efficient in generating high 
quality depth data indoors than the passive sensors. Passive depth 
cameras measure correlation of scenes captured from two or more 
cameras [2]. Hybrid depth cameras integrate the active and passive 
methods to generate more accurate depth data and to cover their 
weaknesses [3].  

Computer visual system adopted the basic principles of the depth 
estimation from human visual system model. Depth perception 
arises from a variety of depth cues, for example, monocular cues, 
binocular cues, differences in brightness, and focus [4]. In the 

computer visual system, the Binocular cues is the most important 
source of depth perception. Generally, human percepts depth using 
the distance of a same object between the viewpoints. Therefore, 
most of stereo matching approaches exploit the binocular cue.  

However, depth data acquisition with the binocular cue suffer 
from occlusion problem, which is the important problem in stereo 
matching. Occlusion means that occluded pixel is apparent in the 
source image, but there is no corresponding pixel in the target image. 
Figure 1 represents the occlusion and the non-occlusion. Because an 
object is obscured by the view of some objects or regions, occluded 
pixels are only visible in the reference image, but in the target image. 
Figure 2 shows the stereo images which the reference images have 
yellow regions, which denote occlusion regions. 

 

 
Figure 1. Occlusion and non-occlusion: The red lines are only visible in the left 
and right images 

Most approaches exploit the ordering constraint or uniqueness 
constraint to optimize the problem via dynamic programing [5, 6]. 
Dynamic programming can independently yield a global minimum 
for each scanline in a polynomial time. The simplest method based 
on the uniqueness constraint apply cross-checking algorithm to 
detect occlusion [7]. Unfortunately, the ordering and uniqueness 
constraints have limitations. In the region of narrow holes or thin 
objects, the ordering constraint is violated. In addition, the 
uniqueness constraint is not appropriate for scenes containing 
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horizontally slanted surfaces due to a discrete representation of 
disparity.  

Kolmogorov et al. introduced an MRF based energy function for 
penalizing occluded pixels [8]. The defect of the algorithm is that 
the penalty of the occlusion term depends on only the uniqueness 
constraint. Using a two-step local method, Liu et al. presented an 
occlusion handling method [9]. To compute an initial matching cost, 
they use contrast contest histogram descriptors. Then, disparity 
estimation is performed via two-pass weighted cost aggregation 
considering segmentation based adaptive support weights. Jang et al. 
proposed a method for occlusion detection and refinement [10]. The 
algorithm optimizes an energy function considering warping, cross 
check, and luminance difference constraints via graph cuts. Even 
though reasonable occluded pixels are obtained, occlusion 
refinement has a drawback. In other words, Jang’s algorithm does 
not consider smoothness constraint to generate smooth surface.  
Therefore, the occlusion refinement part should be improved. 

The first goal of our work is to detect accurate occlusion regions 
using an energy function containing three constraints and optimize 
its energy function via an expectation maximization (EM) algorithm. 
The second goal of our approach is to refine the occlusion and error 
regions using a dynamic programing.  

The rest of the paper is arranged as follows. Section II described 
stereo depth estimation, Section III occlusion detection and 
occlusion refinement in detail. In Section IV, experiment results and 
discussion is presented. Finally, the conclusion is described in 
Section V. 
 

  
                   (a) reference image                                      (b) target image 
 

  
(c) reference image                                  (d) target image 
 

Figure 2. Occlusions: (a) and (b) occlusion in the cones stereo image, and  (c) 
and (d) occlusion in the teddy stereo image. Yellow areas in the reference 
image are occluded from the right camera 

2. Stereo depth estimation 
 
Stereo matching algorithms estimate the distance of objects using 

stereo image. These methods can be categorized into local and 
global methods. Local method measure dissimilarity using local 
support window. Conventional local costs functions include the sum 
of absolute differences (SAD), the sum of squared differences (SSD), 

normalized cross correlation (NCC), and the census transform [11]. 
In contrast to local methods, global methods consider stereo 
disparity estimation as a labeling problem where the pixels of the 
reference image are nodes and the estimated disparities are labels. 
Global methods minimize an energy function via optimization 
techniques such as dynamic programming [12], graph cuts [13], 
belief propagation [14], and semi-global matching [15].  

 

 
(a) 

 

 
(b) 

Figure 3. Examples of census transform and Hamming distance. The example 
of Hamming distance is 4 

The energy function used in stereo matching usually consists of a 
correspondence data term and a smoothness term. Data term 
measures how well the observations are matched. Smoothness term 
assumes that pixels that are adjacent to each other may have a 
similar disparity.  
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where ds is the disparity map for a reference image I(x, y) and λ is a 
weight parameter that adjusts smoothness of the result. Ds( ) is the 
data term and Ss,t( ) is the smoothness term. We exploit data term as 
Hamming distance defined by 
 

))(),(()( dccss pIpIHammingdD   (2) 

where )(pIc  and  )( dc pI  are transformed vectors using census 
transform, which is a non-parametric local transform method. 
Hamming distance is the number of differences between two vectors 
as shown in Fig. 3(a). Let )(pIc  denotes census transform of one 
point p. The center pixel’s intensity value is replaced by the bit string 
composed of set of boolean comparisons such that in a square 
window and  )(pIc  is defined as  
 

))(),(()( qIpIpI
pNq

c 

  (3) 

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.5.SDA-449

IS&T International Symposium on Electronic Imaging 2016
Stereoscopic Displays and Applications XXVII SDA-449.2

http://endic.naver.com/search.nhn?sLn=kr&query=improve
http://endic.naver.com/search.nhn?sLn=kr&query=improve">e
http://endic.naver.com/search.nhn?sLn=kr&query=improve
http://endic.naver.com/search.nhn?sLn=kr&query=improve
http://dx.doi.org/10.2352/ISSN.2470-1173.2016.5.SDA-449
http://dx.doi.org/10.2352/ISSN.2470-1173.2016.5.SDA-449


 

 

where   denotes concatenation, Np is neighboring pixels in a 
window, and  denotes transform represented as 
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Census transform converts relative intensity difference to 0 or 1 in 
1 dimensional vector form. Figure 3(b) represents an example of the 
census transform of a window with respect to the center pixel.  

Alejo Concha et al. evaluated several cost functions [16]. The 
results of [16] show that truncated L1 and L2, Tukey and Geman-
MacClure have the best performance. Therefore, we use smoothness 
term as truncated L2-norm defined by 

 

)|,|min(),(, stststs TddddS    (5) 

where Ts is the truncation value to constrain the high cost increase. 
Figure 4 shows  the graph of truncated L2-norm. In order to optimize 
the energy functions, we employ the multi label algorithm which 
calculate optimal solution, is called the "alpha-expansion" algorithm 
[17]. 
 

 
 

Figure 4. Graph of truncated L2-norm. 

3. Occlusion handling 
 

3.1 Occlusion detection 
 
Occlusions are a principal challenge for the accurate computation 

of visual correspondence. Occluded pixels are visible in only 
reference image shown in Fig. 1.  

 
Figure 5. Warping constraint 

We exploit the ordering constraint, uniqueness constraint, and 
color similarity constraint to formulate an energy function defined 
by 

 

)(),()()( R
c

TR
o

R
g

R
T DEDDEDEDE 321    (6) 

where )( R
g DE , ),( TR

o DDE , and )( R
c DE  are ordering constraint 

term, uniqueness constraint term, and color similarity term. λ1, λ2, 

and λ3 are weights. DR and DT are the reference and target disparity 
maps respectively. Ordering constraint predicts candidates of 
occluded pixels. Pixels in the reference image are projected to the 
target image. In the case of many-to-one mapping, a pixel which 
possesses the largest disparity value is selected as the visible pixel, 
but the rest of the matching pixels become occluded pixels shown 
Fig. 5. The red-colored pixels are regarded as candidates of occluded 
pixels. Ordering constraint is defined as 
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where α is a small positive value. Uniqueness constraint Evaluate 
the mutual consistency from both disparity maps and both color 
images. Uniqueness constraint is defined as 
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where xz is a pixel in a reference image. If a particular pixel in the 
image is not an occluded pixel, the disparity values from the left and 
the right disparity maps should be consistent as shown in the Fig. 6. 
 

 
Figure 6. Uniqueness constraint 

Color similarity in the color cube (RGB) is measured by the 
Euclidean distance. Color similarity measurement is represented as 
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where CR and CT are the reference and target color images 
respectively. WC is a normalization factor.  
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Figure 7. Gaussian mixture model (GMM):  parameters (k=2) 

In order to estimate occlusion regions, we exploit expectation 
maximization (EM) algorithm for Gaussian mixture model (GMM). 
EM is an iterative method for finding maximum likelihood and is a 
parametric optimization algorithm. Therefore, two GMM 
parameters are estimated by using the occlusion energy function 
from (6). Figure 7 shows an illustrative example of estimating a one 
dimensional Gaussian. 
 

3.2 Occlusion refinement 
 

After occlusion detection, the reasonable disparity value should be 
filled to the occluded pixel. In [2], they separate occlusion regions 
into two parts. Figure 8 shows the reference image and the 
corresponding occlusion map.  

 

 
                                (a)                                                                      (b) 
Figure 8. Two kinds of occlusion. 

 Let a left image is a reference image. There are the left-side 
occlusion and the general occlusion. Left-side occlusion occurs 
because of non-existence of left-side region in the leftmost of a right 
image. The part in the orange rectangle in Fig. 8 (b) indicates the 
left-side occlusion, and the rest of the occlusion is the general part. 
General occlusion obscures an object or regions on target plane from 
a reference image. In the case of left-side occlusion, we fill an 
occlusion from right to left, but we assign disparity value in general 
occlusion from right to left.  

In order to handle the problem, we formulate an energy function 
for assigning occlusion based on MRF-MAP model defined as 
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where )(dEd  is a data term, and )(dEs  is a smoothness term. We 
exploit the data term as 
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where dist(s, t) is Euclidean distance from s to t, and difs, t denotes 
color dissimilarity. We use the smoothness term as truncated l2-
norm from (5). We minimize the energy function for occlusion 
refinement via dynamic programming, which is an efficient 
algorithm for solving sequential decision problems. Dynamic 
programming divide large problem into a small sub problem. It 
stores all results of sub problem. And calculates sub problem only 
one time. In hole filling algorithm, it is similar to shortest path 
algorithm shown in Fig. 9. 
 
 

 
 
Figure 9. Dynamic programming for hole filling  

In order to enhance disparity, we use guided image filtering, which 
is a kind of edge preserving noise removal filter [18]. The filter 
weights Wp, q are expressed as 
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where |w| is the total number of pixels in a window wk centered at 
pixel k, and ε is a smoothness parameter. k and k  are the 

covariance and mean of pixel intensities within wk. Is, It and k are 

3 ✕ 1 vectors, while k and the unary matrix U are of size 3 ✕ 
3. 
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4. Experimental results 
 
In order to evaluate objectively the performance of our method, 

we exploit the percentages of mismatching pixels (BPR), whose 
absolute difference is greater than 1, was used. First, we evaluate the 
occlusion detection using ground truth, provided by [21-22]. Figure 
10 shows the visual comparison of occlusion detection compared 
with Jang’s method. Table I shows the percentage of the bad 
matching pixels between the results of the proposed method and 
ground truths of the occlusion map. The results show that the 
proposed method is a high performance method compared to 
conventional method. 

TABLE 1 

Evaluation for occlusion map 
 

 Teddy Cone Venus 

Jang's [10] 4.75 6.78 1.16 

proposed 1.55 1.70 3.57 

 

 
                 (a)                                        (b)                                           (c) 

Figure 10. Occlusion detection: (a) Jang’s method;  (b) our method;  (c) 
ground truth 

In the experiment, λ1, λ2, and λ3 weights for occlusion detection 
are set to 0.7, 0.1, and 0.2 respectively. λ weights for depth 
estimation is set to 0.3, and λocc weight for occlusion refinement is 
set to 0.2 to balance each term of the energy function. Figure 11 
represents the results of depth estimation and the results of hole 
filling. Figure 11 demonstrates that the proposed method improves 
the quality considerably. Occlusion regions are well refined.  

 
 

 
 
 
 

 

 
                   (a)                                         (b)                                           (c) 
 

Figure 11. Dynamic programming for hole filling: (a)book; (b) cone; (c) tank. 
First row are the color images, second row the results of initial disparity map, 
third row are the results of occlusion detection, fourth row are Final results, 
last row are ground truth  

TABLE 2 

Evaluation for occlusion map 
 

Algorithm CSBP 
[20] 

Jang’s 
[10]  Proposed GC+occ 

[19] 

Teddy 

nonocc 11.10 6.34 7.81 11.20 

all 20.20 13.62 13.40 17.40 

disc 27.50 17.59 22.75 19.80 

Cones 

nonocc 5.98 4.96 5.70 5.36 

all 16.50 12.70 12.58 12.40 

disc 16.00 14.44 16.42 13.00 
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5. Conclusions 
 

In this paper, we proposed the occlusion detection method for 
stereo matching and hole-filling method to generate 3D information. 
The proposed method exploits the MAP-MRF model to define the 
energy function for generating an initial disparity map. After 
optimizing the energy function via graph cuts, occlusion was 
detected by ordering, uniqueness, and color similarity constraints. 
Further, we assigned reasonable disparity values to occluded pixels 
using dynamic programming and applied edge preserving noise 
removal filter. Experimental results show that our method detects 
more accurate occlusion region compared with a conventional 
method, and our method produces more accurate disparity maps 
compared to other methods in terms of bad pixel rate. 
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