
 1



Abstract--In this paper, we propose a real-time multi-view

depth generation method using a fast upsampling technique and

parallel programming. To upsample input depth maps, we use

guided image filter to improve computational speed and make a

similar quality of depth map compared to conventional methods.

To transfer the memory between CPU and GPU, we apply the

OpenMP and CUDA for the parallel programming using both

CPU and GPU. Experimental results show that our method can

improve computational speed, and remain the quality of high-

definition depth map.

Index Terms—Depth upsampling, Parallel programming,

Guided image filter, CUDA, OpenMP

I. INTRODUCTION

esearch on image processing for creating realistic 3D

contents is still going on today. Moreover, as the fourth

industrial revolution came into being, the technological

advancement in the field of information and communication has

been demanded, and the interest in more realistic video contents

such as augmented reality and virtual reality and the technology

to support it has been amplified. Accordingly, research has been

continuing from technologies capable of rapidly generating 3D

contents using high-quality images to technologies of

producing high-quality 3D objects.

 In this paper, we propose a real-time depth map generation

method using high-definition quality multi-view color images.

In order to get high-resolution depth maps, depth values from

the low-resolution depth map captured by time-of-flight (ToF)

camera are warped to another color spaces corresponding to the

viewpoints of the respective color images first, then we refine

the displaced images into smooth depth maps. To do this, we

applied the guided image filtering method to the depth

upsampling process.

 But it takes a lot of computational time to process a high-

resolution image using a single processor of the CPU. So we

made use of CUDA library and OpenMP API to take advantage

of parallel processing both CPUs and GPUs. From the

experimental results, we show that our proposed method can

generate a multi-view high-definition depth map faster than

conventional methods.

This work was supported by the 'Civil-Military Technology Cooperation

Program' grant funded by the Korea government

II. REAL-TIME MULTI-VIEW DEPTH MAP GENERATION

The overall process of depth map generation is shown in

figure 1. In the pre-processing, camera intrinsic and extrinsic

parameters are acquired through camera calibration, and these

parameters are used for depth upsampling process.

Fig. 1. Pipeline of multi-view depth map generation

A. 3D Warping

To make use of values of the low-resolution depth map in

high-resolution color images captured by multiple view

cameras, we should upsample the depth map based on the

camera’s intrinsic and extrinsic parameters. 3D warping is the

first procedure of the depth map upsampling. In the proposed

method, we changed the color space from the RGB color space

to the HSV color space. Then we removed the background of

the color image to get the object mask of the color image and

warped depth values from the depth map.

Fig. 2. High-resolution depth map acquired from the 3D warping

In 3D warping, the information of the depth map

corresponds to positions corresponding to the viewpoints of the

respective color images. Figure 2 shows the result of 3D

warping. But there are a lot of holes inside each object because

Real-Time Multi-View Depth Map Generation

Based on Guided Image and Parallel Processing
Sunho Kim and Yo-Sung Ho

School of Electrical Engineering and Computer Science

Gwangju Institute of Science and Technology (GIST)

Gwangju, Republic of Korea

{sunhokim, hoyo}@gist.ac.kr

R

 2

this result is expanded image from the low-resolution to the

high-resolution. These holes are filled by using interpolation

methods or specific filters.

B. Fast Guided Image Upsampling

To remove noises or upsample the image, various types of

filters were utilized. gaussian filter, joint bilateral filter, and a

noise-aware filter for depth upsampling (NAFDU) use one or

more kernels based on gaussian distribution to fill the noises

such as holes. In particular, the joint bilateral filter can preserve

the edge and has a simple algorithm. But there is a slight

distortion in near the gradient values and computational speed

is slow although the algorithm is simple.

To overcome these problems, guided image filter [1] is

proposed. Guided image filter can preserve the edge region,

solve the distortion near the gradient value, and improve the

computational speed. In [1], they said that the time complexity

of the guided image filter is O(1). In this method, the guide

image is used to refine the input image. Here, the guide image

may be the input image itself or another image may be used

according to the purpose.




)var(

),cov(

I

pI
a (1)

][][IaEpEb  (2)

][][bEaIEq  (3)

Equation (1) to (3) shows all the formulas used in guided

image filtering, where I is guide image, p is input image, and q

is final output. ε is user-defined. Unlike joint bilateral filter and

NAFDU, which use a time-consuming calculation based on the

gaussian distribution in each kernel, guided image filter only

required mean, variance, and covariance value in each kernel,

each step. The size of the kernel is user-defined.

First, we compute the covariance of the guide image and

input image and the variance of the guide image. Then, add the

small ε value for the normalization. Based on this normalized

variance, we divide the covariance value to get the value a like

(1). Second, we compute the mean of guide image and input

image respectively. Based on two mean values and value a, we

can get the value b using (2). The mean value of the input image

is subtracted from the multiplied value between a and the mean

of the guide image. Finally, we compute the value q by adding

the multiplied value between the mean of the value a and the

guide image to the mean of the value b.

Fast guided image filter [2] improves the speed compared by

previous guided image filter while maintaining the performance

as possible. A feature of the fast guided image filter is that it

resizes the input and result values before and after the filtering

process. First, we downsample the guide image and the input

image, then compute the value a from (1) and b from (2). After

that, we compute the mean of a and b and upsample these two

mean values. Finally, we can get the value q from (3) using the

upsampled two mean values. This method has an advantage that

reduces the amount of computation. Nevertheless, we can get

the similar upsampled result to the result of guided image filter.

Figure 3 (c) is the result of guided image filter and (d) is the

result of fast guided image filter. In figure 3 (d), we subsampled

input image and guide image to 1/2 times. The computation

time can reduce and the result of the upsampled depth map is

similar to the (c). Of course, when we subsample the input

image and guide image under 1/4 times, the result has some

noise and blurred regions.

(a) (b)

(c) (d)

Fig. 3. Upsampling results using two filters (a) high-resolution input color

image (b) ground truth of high-resolution depth map (c) depth map upsampling

result using guided image filter (d) result using fast guided filter, which uses
subsampled input to 1/2 times

C. CUDA GPU Programming

Recently, GPU-based processing has continued to be

demanded in many types of research requiring a high

computational cost such as deep learning. Compute unified

device architecture (CUDA) [3] enables parallel processing

based on one or more GPUs. CUDA, based on C programming

language, helps us to access the GPU and perform faster

programming without any knowledge of GPU API. Basically,

CUDA can be applied C or C++ language. However, some

libraries have come to be able to apply it to other languages

recently such as Java and Python.

Fig. 4. Basic unit of operation of GPU programming.

Figure 4 represents the unit of operation of CUDA GPU

programming. There are a lot of threads in single GPU. And

block consists of several threads, grid consists of several blocks.

 3

Generally, CUDA uses this grid as a basic unit of processing.

The number of threads in GPU is more than in CPU. So, in

image processing, when we proceed the program in parallel, it

is more efficient to compute in GPU, because there are so many

pixel values in high-resolution images.

In order to compute the program through the GPU, we have

to transfer the memories from the CPU. As shown in figure 5

(a), however, conventional memory transfer process runs

synchronously. Therefore, the memory should wait until the

previous memory was returned to CPU right after the operation

in GPU was finished. Our approach uses asynchronous memory

transfer system like figure 5 (b) to reduce the transmission time.

Once a memory is transferred from CPU to GPU, depth map

upsampling process is performed in GPU. In the proposed

method, unlike the synchronous memory transfer system, the

next memory is transferred from CPU to GPU simultaneously,

although the upsampling process is still performing.

Transferred another memory is allocated to another empty

thread, performs the depth map upsampling process, and the

next memory is also transferred sequentially.

(a)

(b)

Fig. 5. Memory transfer process (a) synchronous memory transfer system

(b) asynchronous memory transfer system.

D. OpenMP API for Parallel Programming

OpenMP [4], designed for multi-processing in shared

memory, is an API that can be used for parallel programming

in programming languages such as C, C++, and Fortran. In

OpenMP, we can share the task among the threads and perform

synchronization and communication through the compiler

directive command. Figure 6 shows the fork-join model for

multi-threading in OpenMP.

Fig. 6. Fork-join model for multi-thread.

OpenMP can apply parallelism in source code explicitly.

When we insert a compiler directive command at a desired

position in the source code, it is possible to perform parallel

processing of the multi-thread at the corresponding position.

Generally, it is often used in a loop that requires a large amount

of computation, such as for loop. In OpenMP, the operation of

each loop is distributed to multiple threads, which reduces the

computation time. We also applied this API to transfer multi-

view color images and depth maps in parallel. This allowed us

to reduce the memory transmission time.

III. EXPERIMENTAL RESULTS

For the experiment of the proposed method, we set the

capturing environment as shown in figure 7. Using 6 color

cameras, we captured multiple view high-resolution color

images, and using the ToF camera, we captured a low-

resolution depth map. After that, we perform the camera

calibration process to compute intrinsic and extrinsic

parameters of each camera, remove the background information

to remain the object information only, perform the 3D warping

process in low-resolution depth map based on camera

parameters acquired from camera calibration, and apply our

depth map upsampling method.

(a)

(b)

Fig. 7. Multi-view color and depth image capturing environment. (a) the

layout of camera alignment, (b) capturing environment of studio.

Figure 8 shows the final result of depth map upsampling.

The result can be acquired from each viewpoint of the color

camera. Each image, we captured one person, two people, and

two people with doll respectively. In order to show that the

proposed method can successfully perform not only for one

viewpoint but also for various viewpoints, we included the

results for two viewpoints in this paper.

TABLE I

COMPARISON OF REAL-TIME MULTI-VIEW DEPTH MAP GENERATION SPEED

One person Two people

Two people

with doll

Circular Queue-based [5] 30.293 fps 27.882 fps 22.035 fps

CUDA + Gaussian Filter [6] 34.881 fps 31.228 fps 27.232 fps

CUDA + Gaussian Filter +

down-sampled object [6]
36.339 fps 33.001 fps 31.533 fps

Proposed method 48.012 fps 45.212 fps 43.355 fps

To compare the performance, we use three conventional

methods. First method [5] uses a circular queue to manage the

 4

memory, second method [6] uses CUDA library and gaussian

filter to upsample the depth map. And the third method [6]

added downsampling process in the second method to resize the

input color image because they want to reduce the amount of

data transferred from the CPU to the GPU. After the

transmission, the color image is up-scaled to the original size.

Table 1 shows the comparison results of computation speed.

Conventional three methods use the gaussian filter to upsample

the depth map and second and third methods use CUDA library

only for parallel processing. As shown in table I, our method is

at least 12 fps faster than conventional methods, because our

method reduces both memory transmission time and

upsampling time.

(a)

(b)

(c)

Fig. 8. Results of real-time multi-view depth map generation. Results shows

upsampled depth maps for two viewpoints. Each color images capture (a) one

person, (b) two people, and (c) two people with doll.

IV. CONCLUSION

In this paper, we proposed real-time multi-view depth

generation method., Our upsampling algorithm is based on the

guided image filtering, faster than other filters based on

gaussian distribution. And we used CUDA library for the GPU

parallel processing and OpenMP API for the CPU parallel

processing. Through this, we could get high-resolution depth

map in real-time. In experimental results, our method can get

high-resolution depth maps faster than other conventional

methods. Our method can generate more depth maps 12-18

frames per seconds than conventional methods. Based on these

results, we prove that the proposed parallel programming

method and upsampling algorithm have fast computation speed.

REFERENCES

[1] K. He, J. Sun, and X. Tang, "Guided image filtering," IEEE Trans. Pattern
Analysis and Machine Intelligence. 35(6), pp. 1397-1409, June 2013.

[2] K. He and J. Sun, "Fast guided filter," arXiv preprint arXiv:1505.00996,

May 2015.
[3] R. Farber, “CUDA application design and development,” Elsevier, pp. 8-

10, Oct. 2011.

[4] http://www.openmp.org

[5] E. Ko, Y. Song, and Y. S. Ho, “Real-time multi-view depth generation

using CUDA multi-GPU,” International Conference on Embedded

Systems and Intelligent Technology, pp. 114-116, Sep. 2014.
[6] S. Kim and Y. S. Ho, “Real-time multi-view depth map generation using

high-definition image downsampling,” Spring conference 2017 of KISM

& SEBS, pp. 145-148, Apr. 2017.

Sunho Kim received his B.S. degree in computer
engineering from Hanbat National University, Korea in

2015. He is currently working towards his M.S. degree

in the school of electrical engineering and computer
science at Gwangju Institute of Science and Technology

(GIST), Korea. His research interests include 3D

computer vision, computer graphics, 3D scene

reconstruction, simultaneous localization and mapping

(SLAM), and augmented reality (AR).

Yo-Sung Ho received the B.S. and M.S. degrees in

electronic engineering from Seoul National University,
Seoul, Korea, in 1981 and 1983, respectively, and the

Ph.D. degree in electrical and computer engineering

from the University of California, Santa Barbara, in
1990. He joined the Electronics and Tele-

communications Research Institute (ETRI), Daejeon,

Korea, in 1983. From 1990 to 1993, he was with Philips
Laboratories, Briarcliff Manor, NY, where he was

involved in development of the advanced digital high-

definition television system. In 1993, he rejoined the Technical Staff of ETRI
and was involved in development of the Korea direct broadcast satellite digital

television and high-definition television systems. Since 1995, he has been with

the Gwangju Institute of Science and Technology (GIST), Gwangju, Korea,

where he is currently a Professor in the School of Electrical Engineering and

Computer Science. Since August 2003, he has been Director of Realistic

Broadcasting Research Center at GIST in Korea. His research interests include
digital image and video coding, image analysis and image restoration, advanced

coding techniques, digital video and audio broadcasting, 3- D television, and
realistic broadcasting.

