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Abstract—Estimating the depth map from multi-view images or 

light field images is an essential component in 3D geometry 

analysis. Conventionally, the depth map is estimated from 

integrated local and global information of stereoscopic images. 

However, the estimated depth map is not accurate due to the depth 

discontinuity and homogeneity. To solve this problem, we propose 

a light field depth estimation method based on the convolutional 

residual network. The discontinuity problem in the depth map is 

handled by computing depth cost maps in the residual network. In 

addition, we consider a phase shifted light field image in the loss 

function to acquire a robust depth map in the homogeneous region 

of the light field images. Experimental results demonstrate that 

our network outperforms other neural network architectures in 

terms of the depth map accuracy. 
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I. INTRODUCTION  

Accurate depth estimation is an important step to understand 
the 3D geometric relationship in many applications. Especially, 
depth estimation from the light field images is a critical issue in 
computer vision. Finding corresponding points between 
neighboring images is an essential operation in depth estimation. 
Since light field images consist of a set of horizontal or vertical 
sub-aperture images, we can estimate the depth map from light 
field images in several different ways. 

In computer vision applications, the accurate depth map is 
used for scene recognition [1], 3D modeling [2], and robotics [3]. 
There are various depth estimation algorithms for stereo images. 
In order to estimate an precise depth map from the stereo images, 
we should consider geometric and color consistency conditions. 
For a proper stereo matching operation, we need image 
rectification and color correction.  

In order to extract the image characteristics, we can use 
geometrical image analysis for precise depth map estimation [4]. 
Currently, depth estimation methods based on deep learning 
show good performance in image classification [5], image 
denoising, visual simultaneous localization and mapping 
(SLAM), and depth estimation [6]. 

The main goal of this paper is to generate the depth map from 
light field images using a neural network. Estimating the depth 
map from dense light field images is a highly ill-posed problem. 
To avoid this problem, we need preprocessing operations, such 
as labeling, view point shifting, and scaling, which are used in 
the network training step. In order to minimize the number of 
training parameters, we adopt the architecture of the residual 
bottleneck network, as shown in Fig. 1. 

 

 

Fig. 1.  Architecture of residual bottleneck network  

 

The residual network updates the parameters not only for 
stacked layers ℋ(𝑥) but also for directly connected input data 
𝑥𝑙 . Among many different types of residual networks, we adopt 
the full pre-activated residual network for depth estimation. In 
the original residual network, the activation function is located 
in both inside layers and an additional part. However, the 
original architecture shows worse results in terms of the error 
rate than the full pre-activated architecture [7]. 

Most depth estimation methods, including deep learning-
based methods, suffer from inaccuracy in depth discontinuity 
regions. Training parameters in the learning process are heavily 
affected by the occlusion of objects. In order to handle this 
problem, we can use several sub-aperture images. Since the 
microlens array provides horizontal sub-aperture images, our 
depth estimation network takes advantage of them during 
network training.  

In this paper, we propose a new depth estimation method 
from light field images. The depth discontinuity problem is 
handled by selecting an optimal depth cost value from a set of 
sub-aperture depth maps. We can also obtain viewpoint shifted 
images by applying the phase shift operation. In order to estimate 
the depth map in homogeneous regions, we can use the phase 
shifted images. 
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Fig. 2.   The pipeline of our depth estimation model 

 

II. LIGHT FIELD DEPTH ESTIMATION NETWORK 

In this section, we explain details of our depth estimation 
method. Fig. 2 represents the overall architecture of our method. 
In order to train our model, we use the light field datasets [8]. 
Since the datasets consist of color and depth images, we can train 
our network using both of them. The discontinuous regions in 
the estimated depth map are handled via light field sub-aperture 
images. In order to obtain accurate depth values near the 
discontinuous regions, we find an optimal cost value among 
depth cost maps. 

A. Network structure 

The architecture of our convolutional residual network is 
shown in Fig. 3. Our network is based on the ResNet 34-layer 
architecture [9]. Since a deeper ResNet layer, such as 100-layer, 
does not show any critical difference, compared to a shallow 
layer in terms of the error rate, we built our architecture on the 
34-layer. In order to prevent the small resolution problem in the 
neural network, we first up-scaled the input images. Throughout 
large scaled input images, our network can find more meaningful 
characteristics than for the case of small scale images. 

We partially added a convolution layer at the end of the each 
block 𝐵𝑖 (𝑖 ∈ {1, 2, 3, 4} ) to generate a high dimensionality of 
the depth map. The original ResNet 34-layer considers at most 
512 convolution layer. However, from 𝐵1 to 𝐵4, we newly added 
a convolution block at the end of the original layer structure. 
That blocks have the same depth level with the initial layer of 
continuous convolution block. The increased depth level 
preserves the spatial information in the image and it help 
generate an precise depth cost maps as indicated in Fig. 2. 

The kernel size that is used in the original convolution layer 
is 3 × 3 and the size of the last layer kernel is 1 × 1. ResNet 18-
layer and 34-layer only use 3 × 3 kernel size, but the last part of 
each block in our network kernel size is 1 ×  1 for every 
convolution layer. Our model considers a bottleneck network as 
represented in Fig. 1. The output of the basic model can be 
defined as: 

𝑥𝑙+1 = ℋ(𝑥𝑙 ∙ 𝑊(𝑚)) + 𝑥𝑙 (1) 

 

where 𝑊(𝑚) indicates the weight of model which obtained by 
training, 𝑥𝑙  is input data and ℋ is the network of stacked layer. 

Among the light field sub-aperture images, the center sub-
aperture image 𝐿𝐹𝑐  is used to create a final depth map in our 
network. 

B. Loss function 

While training the network with many datasets, estimated 
depth values are compared with ground truth depth values. For 
the accurate depth value selection, network based depth 
estimation method considers the cost value. In order to get the 
final depth map, our model effort to minimize the color 
dissimilarity between neighbor light field sub-aperture image 
𝐿𝐹𝑖 and center sub-aperture image 𝐿𝐹𝑐 as defined in (2). Where 
the 𝑘 indicates the range of the neighbor sub-aperture images. 

𝐶𝑝ℎ𝑜𝑡𝑜𝑚𝑒𝑡𝑟𝑖𝑐 = ∑‖𝐿𝐹𝑐 − 𝐿𝐹𝑘‖2 

𝑁

𝑘=1

 (2) 

During the photometric consistency is computed between the 
center sub-aperture image and neighbor sub-aperture images, we 
consider phase shifted center sub-aperture image. As the light 
field image usually has very narrow baseline distance, we can 
shift the pixel coordinate at the frequency domain instead of the 
spatial domain as indicated in (3). 

 

ℱ(𝐿𝐹(𝑥, 𝑦 + ∆)) = ℱ{𝐿𝐹(𝑥, 𝑦)}𝑒2𝜋𝑘∆ (3) 

 

where ℱ  indicates the 2D Fourier transform function, and ∆ 
represents the shifting ratio of the center sub-aperture image in 
the frequency domain. Shifted sub-aperture images can be 
recovered in the spatial domain via the inverse Fourier transform. 

The recovered image has different 2D coordinate value 
compare to the original center sub-aperture image. In order to 
compute the 𝐿2 regularization value, we use the shifted image 
which obtained by the shifting ratio ∆ as defined in (4). This 
term help minimize the noise artifact in the homogeneous 
regions. In (4), 𝐿𝐹∆  represents the phase shifted center sub-
aperture image with a ratio of ∆. Due to the shifted regions have 
different coordinate values with the center sub-aperture image, 
those are very helpful for exact cost value computation. 

 

𝐶𝑠𝑚𝑜𝑜𝑡ℎ = ‖𝐿𝐹𝑐 − 𝐿𝐹∆‖2 (4) 
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Fig. 3.   The Pipeline of our depth estimation model 
 

In order to handle the discontinuous and homogeneous 
regions efficiently, we consider photometric and smooth terms 
simultaneously. Thus, we made a network to minimize the final 
loss function which is defined in (5). The weighting factor α 
controls the equilibrium of two terms.   

𝐶 = ∑[𝛼 ∙ 𝐶𝑝ℎ𝑜𝑡𝑜𝑚𝑒𝑡𝑟𝑖𝑐
𝑘 + (1 − 𝛼) ∙ 𝐶𝑠𝑚𝑜𝑜𝑡ℎ]

𝑁

𝑘=1

 (5) 

III. EXPERIMENT RESULTS 

We train our model through the light field datasets those are 
captured by Lytro Illum B01. The training datasets are composed 
of texture and depth map. After training the our model using light 
field datasets, we validate our network via light field and indoor 
test datasets.  

In order to improve the performance of the training result, we 
apply online data augmentation with rotation of 30 degrees, 
horizontal and vertical flip, and random scaling. In addition, we 
use the fixed earning rate of 0.05 for every convolution layer. 

We compare the generated depth map throughout the our 
model with widely used neural network models to show the 
superiority of our result. In order to evaluate the generated depth 
map quality, we use the following evaluation metrics: 

 Average relative error (rel): 
1

𝑛
∑

|�̅�𝑖−𝑥𝑖|

𝑥𝑖
𝑖  

 root mean squared error (rms): √
1

𝑛
∑ (𝑥�̃� − 𝑥𝑖)

2
𝑖  

 root mean squared error in log space (rms(log)): 

 √
1

𝑛
∑ (𝑙𝑜𝑔𝑥�̃� − 𝑙𝑜𝑔𝑥𝑖)

2
𝑖  

 average 𝑙𝑜𝑔10 error (log10): 
1

𝑛
∑ | log10 𝑦𝑖 − log10 𝑦𝑖

∗ |𝑖  

 accuracy with threshold (δ): % of 𝑥�̃� s.t. max(
𝑥�̃�

𝑥𝑖
,

𝑥𝑖

𝑥�̃�
) = 𝛿 

δ1,2,3 = 1.25, 1.252, 1.253 

Since our model is proposed based on the ResNet 34-layer, 
we compare the performance of our model with different layer 
structure such as 18-layer and 50-layer. In addition, we compare 
the performance of proposed network with state-of-the-art depth 
estimation method. Due to our network is designed for light field 
depth estimation with the neighbor sub-aperture images, we 
verify the performance of our network using light field datasets 
and NYUD v2 datasets. 

 

A. Light field dataset 

For the fair comparison of the proposed method in the light 
field datasets, we only compare the our model with different 
ResNet layer models. Since the used light field datasets are 
captured in indoor condition, training weight values are 
appropriate to estimate a depth map of indoor scene and the 
results are represented in Fig. 4. 

 

Fig. 4.   Depth estimation results of light field scene, (a) input data, (b) 

ground truth, (c) ResNet 18-layer, (d) proposed network 

 

Depending on the number of light field neighbor sub-
aperture images N and phase shifting ratio ∆, the artifacts of the 
discontinuous region and the homogeneous region are changed. 
Even though we use many sub-aperture images for depth 
estimation, the depth map quality is not always guaranteed. The 
distance between center sub-aperture image and neighbor sub-
aperture affect to the depth map quality. 

In order to analyze the artifact of a number of sub-aperture 
in depth map quality, we evaluate the result of the depth map in 
term of bad pixel ratio (BPR) in Table 1. In the same manner, 
the effect of shifting ratio also considered. Thus, we analyze the 
relationship between phase shift ratio and number of sub-
aperture images simultaneously. 

From the BPR result of light field scenes, the proposed 
network shows better performance than the original ResNet 18-
layer model. Most of the experiment results show accurate depth 
values when we apply the N=3 and ∆= 0.5 parameters.  
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TABLE   I 

LIGHT FIELD SCENES BPR COMPARISON RESULTS WITH FIXED PARAMETERS 

(N AND ∆) 
 

Sequences 

ResNet 18-Layers Proposed 

N=2 

∆=0.3 

N=3 

∆=0.5 

N=4 

∆=0.7 

N=2 

∆=0.3 

N=3 

∆=0.5 

N=4 

∆=0.7 

Diplodocus1 39.57% 37.07% 39.76% 32.12% 31.41% 33.23% 

Desktop 28.18% 25.17% 29.12% 20.88% 18.82% 24.09% 

Diplodocus2 42.88% 41.29% 40.35% 36.29% 34.14% 37.18% 

Magnets1 38.01% 33.22% 39.27% 31.18% 28.04% 35.31% 

 

B. NYUD v2 dataset 

We have also compared the performance of the proposed 
model with the original shallow and deep ResNet network. The 
estimated depth maps are indicated in Fig. 5.  

The ResNet 18-layer and 50-layer based depth map have a 
blurring issue in result depth map when it compared with the 
proposed network depth map result. As already proven that in 
[7], deep network layers shows better performance than shallow 
network layers. As explained, 18-layer result of Fig. 5 (c) shows 
more blurring artifact than 50-layer result of Fig. 5(d). 

Since our model is designed on the ResNet 34-layer, it shows 
competitive performance than original ResNet 34-layer. 
However, the estimated depth still has unsharpened depth 
regions near the object boundary, especially in the detailed 
regions. To numerically analyze the depth map quality, we 
compute quality evaluation metrics in Table 2. 

ResNet 18 and ResNet 50 indicate original ResNet 
architecture based depth quality evaluation results. As 
represented in Fig. 5 (c) and Fig. 5 (d) results, the original 
ResNet results have smudged edge depth values compare to the 
proposed results. For that reason, proposed depth map quality 
always outperform the other network-based depth map results. 

 

 

Fig. 5.   Depth estimation from light field scene, (a) input data,  

(b) ground truth, (c) ResNet 18-layer, (d) ResNet 50-layer, 

 (e) Proposed network 

 

TABLE   Ⅱ 
COMPARISON RESULTS ON NYUD V2 DATASET 

 

Method rel rms log10 δ1 δ2 δ3 

ResNet 18 0.251 0.750 0.313 0.688 0.802 0.836 

ResNet 50 0.231 0.709 0.288 0.753 0.833 0.873 

Eigen[9] 0.177 0.665 0.242 0.792 0.977 1.070 

Proposed 0.156 0.571 0.255 0.828 0.981 1.013 

 

However, our network is slightly weaker in log10 and δ3 than 
[10] results. Even though deeper ResNet is much stronger than 
the shallow network, our architecture has a better result than 
ResNet 50. 

IV. CONCLUSION 

In this paper, we propose the ResNet-based light field depth 
estimation network. In order to handle depth discontinuous 
regions, we use the residual network with the neighbor sub-
aperture images. In addition, smooth term alleviate the 
homogeneous region problem in depth map by using phase 
shifted sub-aperture images. In the future work, we will improve 
the depth map quality via unsupervised network. That network 
will bring out more robust depth estimation results without 
considering the type of training datasets. 
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