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Abstract: Most applications in computer vision manage to suppress textures and noise while maintaining meaningful structure
based on colour intensity variation, but it is intractable due to texture patterns or error. This study presents an edge-preserving
suppression method for depth estimation. The authors formulate a functional energy function based on the relative total intensity
and space variation, and they minimise the energy function via iteratively reweighted least squares. Assuming that textural
edges most likely correspond to depth discontinuities, they exploit the comparative variations of the colour image to produce a
more accurate depth map. The experimental results demonstrate the usefulness of the proposed approach, and show that
texture patterns are suppressed while meaningful edges are preserved. According to the results of the depth acquisition
methods, the proposed depth estimation methods generate the accurate and robust results.

1 Introduction
Computer vision has been widely studied during the past decades
and focused on many tasks such as recognition, motion analysis,
scene reconstruction, and image restoration. It has relevance to the
theory behind artificial systems that extract information from
images. Typically, extracting major information from a computer is
tough. As shown in Fig. 1, the human visual system is fully capable
of understanding images which involve complex textures, colour
contrast, or noise, but computer vision system is more demanding
to complex textural images such as brick walls, railroad boxcars,
and subways; carpets, sweaters, and other fine crafts contain
various geometric patterns. Ambient noise means the noise caused
by external influences such as illumination, temperature, or
transmission. The pattern of noise typically is irregular. Texture
usually refers to surface patterns that are similar in appearance and
local statistics. The texture could be regular, near-regular, or
irregular. 

To remove noise and to obtain meaningful information from a
complex texture image, simple linear filters with explicit kernels,
such as the mean, Gaussian, and Laplacian filters [1], have been
actively implemented in image restoration, blurring/sharpening.
Several non-linear filters are also proposed, for example, median
filtering [2], weighted median filter [3], bilateral filter [4], and
guided image filter [5].

Rudin and co-workers [6] first introduced total variation (TV)
regularisation in an image processing context for noise
suppression. After that, many approaches were proposed by

exploiting TV. As these approaches simply use a weight to enforce
structural similarity between the input and output, the TV
regulariser has limited ability to distinguish between significant
structural and textural edges [7, 8]. Farbman et al. optimised an
objective function via weighted least squares, and Xu et al.
introduced L0 gradient minimisation. However, they also did not
obtain an optimal solution [9, 10]. Li Xu et al. [11] used relative
TV method to overcome the weaknesses of previous methods.
Even though this approach distinguishes between structure and
texture well, the regions of major contours are blurred as shown in
Fig. 2. 

Recently, a variety of cost aggregation approaches for stereo
matching have been proposed. Yoon and Kweon [12] first
presented to filter the cost volume using a joint bilateral filter. The
idea is that pixels having a colour similar to the centre pixel are
likely to lie on the same object, therefore have similar depth, and
effectively preserves depth boundaries. He et al. [5] proposed a
guided image filter, which has linear runtime in the number of
image pixels. This filter shows leading speed and accuracy
performance [13]. Yang [14] proposed a non-local cost aggregation
method, which enlarges the window size to the whole image. The
non-local cost aggregation can be performed very fast by
computing a minimum spanning tree derived from the graph.
Recently, Zheng et al. [15] presented a cross-scale cost
aggregation, which is one of the methods to estimate accurate
disparity values in homogeneous regions. This method constructs a
hierarchical structure to aggregate matching costs.

The acquisition of depth maps is a significant requirement in
many three-dimensional (3D) applications. Time-of-flight (ToF)
sensors are widely used to generate the depth map in real time, but
low resolution is one of the crucial drawbacks. Therefore, many
approaches for generating high-resolution depth methods are
presented. Kopf et al. [16] presented filter-based depth upsampling
algorithms exploiting joint bilateral upsampling. This approach
generates a high-quality depth map, but a texture copy problem
occurs. Thus, Chan et al. [17] proposed a noise-aware filter for
depth upsampling, which can overcome the texture copy problem.
However, these methods often induce the over-blurred problem
near the depth discontinuities. Some approaches based on the
Markov random field have been proposed for solving its problem
[18, 19], but error propagation problem occurs during the
optimisation process.

Section 2 explains relative total intensity and space variation.
Section 3 introduces a novel cost aggregation for stereo matching

Fig. 1  Complex textural images
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using relative total intensity and space variation in detail. Section 4
presents a depth upsampling method exploiting relative total
intensity and space variation. In Section 5, the proposed technique
is validated using experiments. Finally, Section 6 concludes the
paper.

2 Relative total intensity and space variation
Variational optimisation deals directly with finding the optimal
functions themselves. This means that the solution space is
composed of functions as elements. Typically, the variational
energy function is composed of two terms which involve a data-
driven energy term Ed and a smoothness-based energy term Es. A
data-driven energy term denotes a reasonable optimisation criterion
which a reconstructed image should be close to an input image. A
smoothness-driven energy term forces adjacent pixels to have the
same or relatively close intensity with comparatively small colour
changes inside each region. The energy function incorporating the
two terms is formulated by

E = Ed(R
^

p, Ip) + λ ⋅ Es(R
^

p)where Ed = ∑
p

(R^
p − Ip)2,

Es = ∑
p

∥ ∇R^
p ∥2

2 (1)

where R is an original unobserved image, R^  is a reconstructed
image, and I denotes a given image. ∑

p
∥ ∇R^

p ∥ is a TV regulariser,

expressed as

∥ ∇R^
p ∥2

2 = (∂R^ /∂x)2 + (∂R^ /∂y)2 (2)

The TV of a signal measures how much the signal changes
between signal values. TV is exploited as a regulariser to take
advantage of its edge-preserving nature and is used for applications
such as image denoising, inpainting, and deconvolution.

Relative TV (RTV) is a straightforward and efficient method to
remove texture while conserving meaningful edges [11]. The
inherent characteristic difference between textural and structural

edges provides a cue to distinguish those edges as shown in Fig. 3.
The textural edges fluctuate considerably, but the structural edges
are increased or decreased steadily. RTV exploits the ratio between
the sum of absolute variation and the absolute sum of variation
[11]. RTV is defined as

RTV(p) = DX(p)
LX(p) + ε + Dy(p)

Ly(p) + ε

whereDX(p) = ∑
q ∈ R(p)

gp, q (∂xR
^)q , Dy(p) = ∑

q ∈ R(p)
gp, q (∂yR

^)q

Lx(p) = ∑
q ∈ R(p)

gp, q(∂xR
^)q , Ly(p) = ∑

q ∈ R(p)
gp, q(∂yR

^)q

(3)

where gp,q is Gaussian convolution, and ε is a small positive
number to avoid division by zero. q is a pixel in a window R(p)
centred at pixel p. The proposed method employs the RTV method
to formulate an objective function. In order to obtain an initial
near-optimal solution, the proposed method concerns the weights
for intensity and space. Relative total intensity and space variation
is expressed as

ZX(p) = ∑
q ∈ R(p)

bp, q (∂xR
^)q , Zy(p) = ∑

q ∈ R(p)
bp, q (∂yR

^)q ,

Nx(p) = ∑
q ∈ R(p)

bp, q(∂xR
^)q , Ny(p) = ∑

q ∈ R(p)
bp, q(∂yR

^)q

where bp, q = 1
Wp

∑
q ∈ R(p)

gσ1 ∥ p − q ∥ gσ2 ip − iq iq

(4)

where Z(p) is windowed TVs, and N(p) is windowed inherent
variation. bp,q is a spatial and intensity weight. gσ1(·) denotes
spatial weight, and gσ2(·) is a weight for colour difference. Wp is a
normalisation term. The relative total intensity and space variation
in (3) are used to formulate an objective function. The objective
function is written as

arg min
R̂

∑
p

(R^
p − Ip)2 + α

ZX(p)
NX(p) + ε + Zy(p)

Ny(p) + ε (5)

where (R^
p − Ip)2 is a data-driven energy term which makes an input

and a result not wildly deviate. The second term is a regularisation
(smoothness) term that preserves major edges and suppresses
textures. We transform it into a matrix form to solve the objective
function [20]. The objective function can be written as

(u − g)T(u − g) + α(uTDxAxWxDxu + uTDyAyWyDyu) (6)

where u and g are the vector representation of R^  and I, respectively,
and the matrices Dx and Dy are discrete differentiation operators.
Ax, Ay, Wx, and Wy are diagonal matrices. The minimisation
solution of the linear system in an iteration is represented as

1 + Dx
TAx

tWx
t Dx + Dy

TAy
tWy

t Dy ⋅ ut + 1 = g (7)

where 1 + Dx
TAx

tWx
t Dx + Dy

TAy
tWy

t Dy  is Wp
−1 and 1 is an identity

matrix. The sparse matrix Wp
−1 is represented as (see (8)) 

The optimisation technique is similar to an iteratively
reweighted least squares (IRLS) [21]. However, the weight matrix
is very huge, but most of the elements are zero. Thus, operations
using standard dense-matrix are extremely slow and inefficient. In
addition, memory is much wasted. This paper exploits a sparse
matrix strategy to handle the large matrix. In numerical analysis, a
sparse matrix is a matrix in which most of the elements are zero,
and the matrix is typically stored as a 2D array. Each entry in the
array represents an element ai,j of the matrix and is accessed by the

Fig. 2  Results and comparison
(a) Original image, (b) L0 gradient minimisation, (c) RTV, (d) Proposed
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two indices i and j. A sparse LU factorisation method is used to
solve the sparse matrix.

3 Cost aggregation for stereo matching using
relative total space and variation
Stereo matching aims to identify the corresponding points and
estimate their displacement to generate a depth map. It has been
one of the most important tasks in the computer vision field. Many
depth estimation methods are presented, and it can be classified
into global and local approaches according to the strategies [22,
23]. In this section, a cost aggregation method for stereo matching
is presented by using relative total intensity and space variation.
Fig. 4 illustrates overall framework of the stereo matching method
[24]. Our algorithm performs the following steps: (i) constructing
cost volume, (ii) cost aggregation, (iii) disparity selection, and (iv)
disparity refinement. 

3.1 Cost volume

A raw cost volume is constructed by calculating matching costs for
each pixel p at all possible disparity levels between the left the
image and the right image. A truncated absolute intensity
differences and truncated absolute difference of gradients in the x-
direction are chosen. The absolute difference of intensity is
represented as

D(d) = ∑
i, j ∈ W

Ir(x + i, y + j) − It(x + i + d, y + j) (9)

where Ir and It are reference and target images, respectively, the
absolute difference of gradients is computed as

G(p, d) = ∇x(Ir(p)) − ∇x(It(p − d)) (10)

where ∇x(I(p)) denotes the gradient in x-direction computed at
pixel p. The overall cost function is expressed as

C(p, d) = λ ⋅ min (Tc, D(d)) + (1 − λ) ⋅ min (Tg, G(p, d)) (11)

where λ balances the per-pixel matching cost and gradient terms
and Tc, Tg are the census and gradient truncation values.

3.2 Cost aggregation using relative total intensity and space
variation

Cost aggregation has a significant impact on stereo matching
methods because it enforces piecewise constancy of disparity, over
the support region of each pixel. Therefore, we use the proposed
relative total intensity and space variation to aggregate each level
of the cost volume. Exploiting a reference image Ir, the proposed
relative total intensity and space variation is calculated to compute
the aggregated cost as follows:

CR(p, d) = WpC(p, d) (12)

where CR(p, d) denotes the aggregated cost using the proposed
relative total intensity and space variation, Wp is the inverse weight
matrix computed based on the structural vector u. The inverse
weight matrix Wp depends on image Ir, which is the reference
image. Wp is defined as follows:

Wp = (1 + Dx
TAx

tWx
t Dx + Dy

TAy
tWy

t Dy)−1 (13)

Here, the matrices Dx and Dy are discrete differentiation operators.
Ax, Ay, Wx, and Wy are diagonal matrices from (5).

3.3 Disparity selection and post-processing

Once the cost volume is aggregated, the winner-takes-all strategy is
applied to choose the best disparity value for each pixel p.
Disparity selection method is defined as

dp = arg min
d ∈ D

CR(p, d) (14)

where D denotes the set of all allowed disparities. Streak-like
artefacts in the result are produced. Therefore, this method uses a

Wp
−1 =

y1, 1 z1, 2 0 ⋯ 0 λ1 0 0 ⋯ 0
x2, 2 y2, 2 z2, 3 0 ⋯ 0 λ2 0 0 ⋯
0 x3, 2 y3, 3 z3, 4 0 ⋯ 0 λ3 0 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 0 0 xw − 1, w − 2 yw − 1, w − 1 0 0 0 0 ⋱
λ1 0 0 0 xw, w − 1 yw, w zw, w + 1 0 0 0
0 λ2 0 0 0 xw + 1, w yw + 1, w + 1 yw + 1, w + 2 0 0
0 0 λ3 0 0 0 xw + 2, w + 1 yw + 2, w + 2 zw + 2, w + 3 0
0 0 ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱
0 ⋯ ⋯ 0 ⋱ 0 ⋯ 0 ⋱ ⋱

(8)

Fig. 3  Textual edges and structural edges
 

Fig. 4  Whole process of the proposed stereo matching method
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weighted median filter to smooth the filled regions for reducing
these artefacts [3].

4 Depth up-sampling
The limitation of low resolution captured by active depth cameras
such as ToF camera and structured light depth camera is critical in
computer vision applications. Therefore, this section presents a
new interpolation method for the low-resolution depth map to
effectively enhance the resolution. The solution is also globally
optimised with IRLS.

4.1 3D warping

The hybrid camera system combining an active depth camera and
multiple colour cameras are captured at different positions. To
obtain the high-resolution depth map on the same position of the
corresponding colour image, the 3D warping technique is
implemented [25]. As shown in Fig. 5, the 3D image warping
consists of two steps: backward projection with depth data and
forward projection. Let ml and mt be the corresponding pixels in the
viewpoint image of the depth camera and the viewpoint image of
the colour camera, respectively. Based on the pin-hole camera
model, the pixel point ml can be defined by the camera parameters
as

mr = Kr ⋅ Rr ⋅ M + Kr ⋅ tr (15)

where M is the point in the world coordinates, and mr is the point
in the depth camera point. K is an intrinsic parameter, R denotes a
rotation matrix, and t represents a translation vector. The next step
is finding the corresponding pixel position mt in the view point of
the colour camera. The point in the world coordinates M is
projected onto the viewpoint of the colour camera using its camera
parameters as

mc = At ⋅ Rt ⋅ M + At ⋅ tt
= At ⋅ Rt ⋅ Rr

−1 ⋅ Ar
−1 ⋅ mr − At ⋅ Rt ⋅ Rr

−1 ⋅ tr + At ⋅ tr
(16)

4.2 Depth up-sampling using relative total intensity and
space variation

After warping depth data, a high-resolution sparse depth map in the
colour camera coordinate is generated. Fig. 6 represents the
resolution difference between the colour image and the depth map
of the hybrid camera system, and it shows the structure after the 3D
warping process. This algorithm exploits a nearest-neighbour
interpolation method to interpolate the high-resolution sparse depth
map. As in the case of (12), exploiting a reference image Ir, the
proposed relative total intensity and space variation can be used to
produce a more accurate up-sampling result as follows:

dH = Wpdh
i (17)

where dh
i is the interpolated depth map, and dH is the high-

resolution dense depth map, and Wp is the inverse weight matrix
computed based on the structural vector u. 

5 Experimental results
This section evaluates the proposed method quantitatively and
quantitatively on both the synthetic data and real data. The
comparison is performed with other conventional methods. First,
the proposed algorithm was tested using a dataset which contains
200 ‘structure + texture’ images, provided by [11]. A precision–
recall method is chosen to evaluate the results quantitatively.
Typically, precision–recall curves are used in binary classification
to study the output of a classifier. After applying the conventional
smoothing methods and the proposed method, this approach
extracts structures from the results. Moreover, it compares the
structure images and the ground truth label. The precision–recall
curves for the four algorithms are plotted in Fig. 7. The results of
precision–recall curves show that the proposed methods
outperform conventional method. 

Fig. 2a shows a ‘Bishapur zan’ image. Many marbles form the
image. Thus, making an extraction is very challenging. The results
from conventional methods are presented from Fig. 2b and c. L0
gradient minimisation preserves and enhances sharp edges, but it
does not deal with textures. RTV removes textural edges while
maintaining meaningful edges. The proposed method suppresses
textural edges, preserves major edges, and especially sharpens
edges, compared with the conventional methods. Close-ups in
Figs. 8a and b depict the results of proposed method have clear
edges comparing with RTV. Fig. 9 represents the 1D examples of
clear edge enhancement. The proposed method performs as an
image structure extraction like RTV but has better behaviour near
the edges.

Fig. 10 represents the results of the proposed method. Textural
edges are well suppressed while preserving primary structures. The

Fig. 5  Projection from a low-resolution depth map to a high-resolution
sparse depth map in the colour camera coordinate system

 

Fig. 6  Structure after the 3D warping using low-resolution depth map
 

Fig. 7  Precision–recall curve
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datasets computed using the conventional filter-based cost
aggregation methods, and the proposed cost aggregation method
are presented in Fig. 11. Fig. 11 shows that the proposed cost
aggregation method provides more accurate results, and errors are

well removed from the Middleburry dataset [26]. Fig. 12 shows the
results of the proposed stereo matching method and its ground
truth. 

To evaluate the performance of proposed stereo matching
method objectively, we exploit the percentages of mismatching
pixels (BPR) with known ground truth disparity. Table 1
summarises the percentage of the bad matching pixels between the
results of the proposed method and ground truths. This measure is
computed non-occluded denoted as ‘nonocc’. The results exhibit
robust performance compared to conventional methods. Fig. 13
represents the up-sampling results of art, book, cone, laundry, and
teddy from the Middlebury dataset. 

For comparison, additional experiments of the stereo matching
were carried out with Middlebury dataset [26]. Fig. 14 shows the
results of the proposed stereo matching method. The proposed
method generates the more accurate depth maps in the texture
region than the conventional method. Table 2 summarises the
quantitative comparison results on the Middlebury dataset [26].
Root mean squared error (RMSE) measures objective depth map
quality. RMSE is the square root of the mean of the square of all of
the error. The use of RMSE is very common, and it makes a
general purpose error metric for numerical predictions. It can be
observed from Table 2 that the proposed method performs well
compared to other approaches. This approach also exploited real-
world examples to test the proposed depth up-sampling method.

Fig. 8  Results of close-ups and comparison
(a) Results of RTV, (b) Results of proposed

 

Fig. 9  Original and denoised signal with RTV and proposed methods
 

Fig. 10  Results of proposed method. The first column images are the
original images and the second-column images are deblurred images
(a) Original image, (b) Proposed

 

Fig. 11  Visual comparison with conventional cost aggregation methods
and proposed cost aggregation method
(a) Bilateral filter, (b) Guided image filter, (c) Box filter, (d) Proposed

 

Fig. 12  Results of the proposed stereo matching method. First column
images are original images, second column images are ground truth
images, and last column images are the results of the proposed method
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Fig. 15 display the results of the proposed depth up-sampling
method using the images captured by a ToF camera and a colour
camera. Fig. 16 represents cafe and newspaper sequences obtained
from GIST [34]. Since a depth map captured by ToF camera has
low resolution and has fundamental problems, such as the
ambiguity of depth information in the shiny and dark surface, these
real-world examples are challenging with complicated boundaries
and thin objects. 

6 Conclusions
Ambient noises and textures are factors that affect the quality of
results. Therefore, it is very important to remove textures and
noises in the data before some image processing such as edge
detection, object recognition, and image segmentation. In this
paper, an edge-preserving smoothing method for depth estimation
via comparative variation is proposed. After formulating the energy
function, reweighted least squares methods are used to minimise

the energy function. From the experimental results, it is confirmed
that the proposed method preserves major structure while texture
edges are removed, and has better behaviour near the edges,
compared with the conventional algorithms, and it generates the
accurate results of the stereo matching and the depth up-sampling
methods.
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Table 1 Performance comparison with conventional methods and proposed method
Algorithm CSBP [27] Box Bilateral [12] Non-local [28] Segment-tree [29] Guided [5] Proposed

Tsukuba nonocc 14.54 2.00 6.08 5.46 6.31 5.77 5.01
Venus nonocc 16.26 1.48 2.03 2.58 3.18 2.03 1.59
Teddy nonocc 11.2 11.10 7.14 7.19 8.22 4.38 7.02
Cones nonocc 15.69 5.98 9.37 8.21 9.43 7.61 4.55

 

Fig. 13  Upsampling results of art, book, cone, laundary, and teddy from the Middleburry dataset. First row images are original images, second-row images
are 2× upsamping results, and last row images are 4× upsamping results

 

Fig. 14  Results of the proposed stereo matching method. Top row images are colour images, second-row images are ground truth images, third-row images
are results of bilateral filter [12], fourth-row images are the result of guided filter [5], and bottom row images are the results of the proposed method
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Fig. 15  Upsampling results of depth maps captured by the ToF camera which resolution is 176 × 144, and the colour camera which resolution is 1280 × 720
 

Fig. 16  Upsampling using real datasets (newspaper and cafe) [34]
 

Table 2 Quantitative comparison of the synthetic data from the middlebury dataset
Art Laundry Doll Book

2× 4× 2× 4× 2× 4× 2× 4×
CLMF [30] 1.19 1.77 0.96 1.56 0.87 1.44 0.9 1.48
JGF [31] 2.36 2.74 2.18 2.4 2.09 2.24 2.12 2.25
NLM-MRF [32] 1.66 2.47 1.34 1.73 1.19 1.56 1.19 1.47
MRF [33] 1.24 1.69 0.78 1.12 0.75 1.04 0.74 1.04
proposed 0.97 1.76 0.96 1.65 1.24 1.96 1.07 1.87

 

IET Image Process., 2018, Vol. 12 Iss. 5, pp. 629-636
© The Institution of Engineering and Technology 2017

635



8 References
[1] Gonzalez, R., Woods, R.: ‘Digital image processing’ (Prentice Hall, Upper

Saddle River, NJ, USA, 2002, 2nd edn.)
[2] Huang, T., Yang, G., Tang, G.: ‘A fast two dimensional median filtering

algorithm’, IEEE Trans. Acoust. Speech Signal Process., 1979, 27, (1), pp.
13–18

[3] Yin, L., Yang, L., Gabbouj, M., et al.: ‘Weighted median filters: a tutorial’,
IEEE Trans. Circuits and Syst. II, Analog Digit. Signal Process., 1996, 43,
(3), pp. 157–192

[4] Tomasi, C., Manduchi, R.: ‘Bilateral filtering for gray and color images’.
Proc. IEEE (ICCV), 1998, pp. 839–846

[5] He, K., Sun, J., Tang, X.: ‘Guided image filtering’, Proc. European Conf. on
Computer Vision, Heraklion, Crete, September 2010, pp. 1–14

[6] Osher, S., Rudin, L., Fatemi, E.: ‘Nonlinear total variation based noise
removal algorithms’, Physica D, 1992, 60, pp. 259–268

[7] Yin, W., Goldfarb, D., Osher, S.: ‘Image cartoon-texture decomposition and
feature selection using the total variation regularized l1 functional’. Int.
Workshop Variational, Geometric, and Level Set Methods in Computer Vision
(VLSM), 2005, pp. 73–84

[8] Aujol, J., Gilboa, G., Chan, T., et al.: ‘Structure-texture image decomposition
—modeling, algorithms, and parameter selection’, Int. Comput. Vis., 2006, 67,
(1), pp. 111–136

[9] Kass, M., Solomon, J.: ‘Smoothed local histogram filters’, ACM Trans.
Graph., 2010, 29, (4), pp. 100:1–100:10

[10] Xu, L., Lu, C., Xu, Y., et al.: ‘Image smoothing via l0 gradient minimization’,
ACM Siggraph Asia, 2011, 30, (6), pp. 174:1–174:12

[11] Xu, L., Yan, Q., Xia, Y., et al.: ‘Structure extraction from texture via relative
total variation’, ACM Trans. Graph., 2012, 31, (6), pp. 139:1–139:10

[12] Yoon, K., Kweon, I.: ‘Adaptive support-weight approach for correspondence
search’, PAMI, 2006, 28, (4), pp. 650–656

[13] Hosni, A., Bleyer, M., Rhemann, C., et al.: ‘Real-time local stereo matching
using guided image filtering’. ICME, 2011, pp. 1–6

[14] Yang, Q.: ‘A non-local cost aggregation method for stereo matching’. IEEE
Conf. Computer Vision and Pattern Recognition, 2012, pp. 1402–1409

[15] Zheng, K., Fang, Y., Min, D., et al.: ‘Cross-scale cost aggregation for stereo
matching’. IEEE Conf. Computer Vision and Pattern Recognition, 2014, pp.
1590–1597

[16] Kopf, J., Cohen, M., Lischinski, D., et al.: ‘Joint bilateral upsampling’, ACM
Trans. Graph., 2007, 26, (3), pp. 1–5

[17] Chan, D., Buisman, H., Theobalt, C., et al.: ‘A noise-aware filter for real-time
depth upsampling’. ECCV Workshop on Multi-Camera and Multi-Modal
Sensor Fusion Algorithms and Applications, 2008, pp. 1–12

[18] Diebel, J., Thrun, S.: ‘An application of markov random fields to range
sensing’, Adv. Neural Inf. Process. Syst., 2006, 18, pp. 291–298

[19] Kim, D., Yoon, K.: ‘High-quality depth map up-sampling robust to edge noise
of range sensors’. Int. Conf. Image Processing, 2012, pp. 553–556

[20] Lischinski, D., Farbman, Z., Uyttendaele, M., et al.: ‘Interactive local
adjustment of tonal values’, ACM Trans. Graph., 2006, 25, (3), pp. 646–653

[21] Farbman, Z., Fattal, R., Lischinski, D., et al.: ‘Edge-preserving
decompositions for multi-scale tone and detail manipulation’, ACM Trans.
Graph., 2008, 27, (3), pp. 67:1–67:10

[22] Kolmogorov, V., Zabih, R.: ‘Computing visual correspondence with
occlusions using graph cuts’. IEEE Int. Conf. Computer Vision, 2001, pp.
508–515

[23] Ben-Ari, R., Sochen, N.: ‘Stereo matching with Mumford-shah regularization
and occlusion handling’, IEEE Trans. Pattern Anal. Mach. Intell, 2010, 32,
pp. 2071–2084

[24] Baek, E., Ho, Y.: ‘Occlusion and error detection for stereo matching and hole-
filling using dynamic programming’, Electron. Imaging, 2016, p. 5o: 1–6

[25] Fehn, C.: ‘Depth-image-based rendering (DIBR), compression and
transmission for a new approach on 3D-TV’, SPIE Stereoscopic Disp. Virtual
Real. Syst. XI, 2004, 5291, pp. 93–104

[26] Scharstein, D., Pal, C.: ‘Learning conditional random fields for stereo’. IEEE
Conf. Computer Vision and Pattern Recognition, 2007, pp. 1–8

[27] Yang, Q., Wang, L., Ahuja, N.: ‘A constant-space belief propagation
algorithm for stereo matching’. IEEE Conf. Computer Vision and Pattern
Recognition, 2010, pp. 1458–1465

[28] Liu, T., Zhang, P., Luo, L.: ‘Dense stereo correspondence with contrast
context histogram, segmentation-based two-pass aggregation and occlusion
handling’ in Wada, T., Huang, F., Lin, S. (Eds.): ‘Advances in image and
video technology’ (Springer, Berlin, Heidelberg, 2009), pp. 449–461

[29] He, K., Mei, X., Sun, X., et al.: ‘Segment-tree based cost aggregation for
stereo matching’. IEEE Conf. Computer Vision and Pattern Recognition,
2013, pp. 313–320

[30] Lu, J., Shi, K., Min, D., et al.: ‘Cross-based local multipoint filtering’. IEEE
Conf. Computer Vision and Pattern Recognition, 2012, pp. 430–437

[31] Liu, M., Tuzel, O., Taguchi, Y.: ‘Joint geodesic upsampling of depth images’.
IEEE Conf. Computer Vision and Pattern Recognition, 2013, pp. 169–176

[32] Park, J., Kim, H., Tai, Y., et al.: ‘High quality depth map upsampling for 3d-
tof cameras’. Proc. Int. Conf. Computer Vision (ICCV), Barcelona, Spain,
November 2011, pp. 1623–1630

[33] Diebel, J., Thrun, S.: ‘An application of markov random fields to range
sensing’. Conf. Neural Information Processing Systems (NIPS), 2005, pp.
291–298

[34] Ho, Y., Lee, E., Lee, C.: ‘Multiview video test sequence and camera
parameters’. ISO/IEC JTC1/SC29/WG11 MPEG2008/M15419, 2008

636 IET Image Process., 2018, Vol. 12 Iss. 5, pp. 629-636
© The Institution of Engineering and Technology 2017


