
3D Scene Reconstruction Using Colorimetric
and Geometric Constraints on Iterative Closest
Point Method

Dong-Won Shin1
& Yo-Sung Ho1

Received: 6 October 2016 /Revised: 23 May 2017 /Accepted: 12 July 2017 /
Published online: 7 August 2017
# Springer Science+Business Media, LLC 2017

Abstract Advent of the 3D scene reconstruction framework using the RGB-D camera has
enabled users to easily construct their indoor environment in a virtual space and has allowed
them to experience an immersive augmented reality with the reconstructed 3D scene. Techni-
cally, the early stage of the 3D scene reconstruction framework using the RGB-D camera is
based on the frame-to-model registration. It tries to iteratively estimate the transformation
parameters of the camera between the incoming depth frame and its previously reconstructed
3D model. However, due to the nature of the frame-to-model registration, the conventional
framework has an inherent drift problem caused by the accumulated alignment error. In this
paper, we propose a new 3D scene reconstruction framework with the improved camera
tracking capability to reduce the drift problem. There are two types of constraints in this work:
colorimetric and geometric constraints. For the colorimetric constraint, we impose the more
weights on the reliable feature correspondences obtained from color image frames. For the
geometric constraint, we compute the consistent surface normal vector for the noisy point
cloud data. Experimental results show that the proposed framework reduces the absolute
trajectory error representing the amount of the drift and shows a more consistent trajectory
in comparison to the conventional framework.
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1 Introduction

Currently, the augmented reality (AR) system is getting popular due to the releases of its applications
in various fields such as gaming, robotics, education, and art. We can place virtual furniture in our
room before the actual purchase and at the same time, simulate whether it is compatible to our house
or not by mobile AR technology. Moreover, a smart mirror can virtually overlay charming clothes
on our body and allow us to conveniently change clothes without any damages on the items.

What is AR exactly? The definition of AR is a live direct or indirect view of a physical, real-
world environment whose elements are augmented by computer-generated sensory inputs such as
sound, video, graphics or GPS data [11]. The statement implies we can overlay the augmented
information over the real scene and interact with them as those exist right in front of us. In order to
compose the augmented information on the real scene seamlessly, we can consider the 3D scene
reconstruction as a core of the vision-based AR techniques.

An RGB-D camera captures the information of the scene including the complementary nature of
the depth and color images. The release of this renowned device incredibly achieved the advance-
ment in various research fields such as the object tracking and recognition, human activity analysis,
hand gesture recognition, and indoor 3-Dmapping [14]. Especially for the indoor 3-Dmapping, also
known as the 3D scene reconstruction, RGB-D camera has played the important role in transferring
the real scene to the virtual space at a high frame rate.

In the modern 3D scene reconstruction framework using RGB-D camera, it is important to
estimates an accurate camera trajectory since understanding where the camera exists in the 3D scene
directly affects the quality of the reconstructed 3D scene [7]. Many of them rely on 3D point cloud
registration on a frame-to-model basis in an early phase for an initialization of camera positions [16,
19, 27]. However, since there is a model drift problem due to an accumulated trajectory error derived
from the frame-to-model approach, this error should be reduced for the consistent quality of 3Dmodel.

In this paper, we focus on the 3D scene reconstruction framework using an RGB-D camera to
generate a more consistent 3Dmodel of the scene. Our main contribution consists of the two-fold of
colorimetric and geometric constraints. Briefly, the colorimetric constraint is to give more weight on
the feature correspondences from a color frame and the geometric constraint is to estimate the robust
surface normal vector for the noisy point cloud data. We will introduce details of our framework in
the following sections.

2 Related Works

In order to reconstruct the 3D scene in the virtual space, various approaches have been proposed for
several decades. The early method for 3D scene reconstruction using RGB-D camera is
KinectFusion [23]. It incrementally registers the incoming depth information from the hand-held
RGB-D camera and reconstructs the 3D model as a real time by the benefit of GPU parallel
processing. Even it was an early strategy of the 3D scene reconstruction, it has become the main
branch of the field.

A flowchart of the 3D scene reconstruction system is shown in Fig. 1. After capturing the 2-
dimensional depth frames from the RGB-D camera, we can generate the 3-dimensional point cloud
data (PCD) with the camera’s intrinsic parameters. Then we estimate normal vectors for each point
by the simple cross product calculation with the neighboring vertices. By using the PCD and normal
vectors, we can perform the frame to frame registration and compute the camera trajectories via the
point-to-plane iterative closest point (ICP) method [20]. After that, we compute the volumetric
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model of the scene and finally, we can obtain the integrated 3Dmodel [6]. The overall procedure is
repeated as depth frames are coming and hierarchically performed at each stage. Thanks to the
benefits of the GPU parallel programming, it can be operated in real-time.

However, there is a drift problem caused by accumulated pose estimation errors in the conven-
tional framework. It requires a costly offline global optimization step and makes users generate
explicit loop closures in the trajectory to allow gross alignment errors to be solved. Moreover, the
conventional method only uses the depth information from the RGB-D camera even if the synchro-
nized and view-aligned color information is available. Lastly, when the surface normal vectors are
estimated, the conventional method uses the simple cross product calculation which is vulnerable to
noisy PCD. Those problems of the conventional method cause a globally inconsistent 3D model.

Henry et al. proposed the RGB-D Mapping method combining both the color and depth
information to track the camera position in 3D space [16]. They found the initial transformation
between frames with arbitrary visual features and optimized the color and depth combined cost
function iteratively. However, they didn’t provide the comprehensive analysis for the weight value.

In order to reduce the drift problem, Fioraio et al. introduced the sub-volume based
registration method [8]. The sub-volumes are generated every K frames and their poses are
globally optimized through a volume blending scheme. However, the consistent frame to
frame registration is still necessary for the sub-section, which we are going to experiment with
the various size of sub-volumes.

Especially for the ICP procedure, which is what we are concentrating on, the point-to-plane
method is widely used and it is included in the general 3D scene reconstruction framework [23].
Aside from that, GuyGodin et al. proposed an ICPmethod imposing the different weight depending
on the Euclidean distance between the points [10]. The inner product of corresponding normal
vectors can be used for ICP weighting scheme [12]. We will compare the camera trajectory result
with these reference methods in Section 4.

In this paper, we present a 3D scene reconstruction algorithmwith the colorimetric and geometric
constraints on the iterative closest point method to reduce the inherent drift problem. The rest of the
paper is organized as follows. In Section 3, we describe the core of our 3D scene reconstruction

Point cloud genera�on

Normal es�ma�on

Camera tracking

Surface model computa�on

Integrated 3D Model

ColorColorDepth Hierarchically performed 
at each stage

x

x

640x480

320x240
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repeat

Fig. 1 Flowchart of the conventional 3D scene reconstruction
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algorithm in detail. In Section 4, we show the experiment setups and results of the proposedmethod.
Finally, in Section 5 we conclude and discuss the limitations of our method and future directions.

3 Proposed 3D Scene Reconstruction System

In this section, we introduce the proposed 3D scene reconstruction system in detail. Fig. 2 shows the
flowchart of the proposed 3D scene reconstruction framework. Mainly, the two constraints are
newly included.

In the case of the colorimetric constraint, the main purpose of this constraint is to impose more
weight on the reliable colorimetric feature correspondences during the camera tracking step.We first
extract features by the SURF detector from current and previous color frames to take the benefit of
the algorithmic acceleration [1]. The correspondence matching step is performed by a fast nearest
neighbor method with the feature descriptors [21], and outlier removal step is conducted by
RANSAC technique with the homography constraint [9]. The refined correspondences will be used
for the camera tracking step, especially in our weighted point-to-plane ICP method.

In the case of the geometric constraint, the primary goal is to estimate the consistent normal
vectors on the noisy PCD. Therefore, we perform the normal estimation method using the principle
component analysis (PCA)with neighboring vertices instead of using the simple cross product in the
conventional framework. At this point, the size of neighbor is critical since it determines the amount
of noise and curvature from other primitives.

In order to obtain the appropriate size of a neighbor set, we exploit the distance transformmap on
the edge image. We first obtain the edge information from both color and depth images by Canny
edge detector [5]. The distance information from a specific pixel to the nearest edge is calculated by
distance transform on the binary edge image [4]. Finally, the size of the neighbor set at each pixel is
defined by the distance information.

3.1 Colorimetric Constraint

Prior to the explanation of the proposed colorimetric constraint, we will briefly introduce point-to-
plane iterative closest pointmethod that ourmethod is originated from and then discuss theweighted
point-to-plane iterative closest point method.

Fig. 2 Flowchart of the proposed 3D scene reconstruction framework
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3.1.1 Conventional Point-to-Plane Iterative Closest Point Method

The Iterative Closest Point (ICP) method is to find the optimum transformation relationship
containing rotation and translation between two sequential PCD [3]. In the conventional framework,
the Point-to-Plane ICP using the perpendicular distance from the source point to the tangent plane at
the destination point was exploited. Fig. 3 visualize the Point-to-Plane ICP and (1) illustrates the cost
function for the relation.

Mopt ¼ argminM ∑
i

M ∙si−dið Þ∙nið Þ2 ð1Þ

Whatwewant to find is the optimum transformationmatrixM containing the rotationmatrix and
translation vector between the source PCD si = {six, siy, siz}. and destination PCD di = {dix, diy, diz},
which is minimizing the perpendicular distance with normal vector ni= {nix, niy, niz}.

In order to find the optimum transformation, K. L. Low solved the cost function by the linear
approximation of the rotation matrix and the least-square method [20]. Equation (2) shows the
modified form of (1) in a least-square sense.

xopt ¼ argminx Ax‐bj j2; ð2Þ

where A ¼
a11 a12 a13 n1x n1y n1z

a21 a22 a23
⋮ ⋮ ⋮
aN1 aN2 aN3

n2x n2y n2z
⋮ ⋮ ⋮
nNx nNy nNz

0
BB@

1
CCA with

ai1 ¼ nizsiy−niysiz
ai2 ¼ nixsiz−nizsix
ai3 ¼ niysix−nixsiy

,

b ¼
n1xd1x þ n1yd1y þ n1zd1z−n1xs1x−n1ys1y−n1zn1z
n2xd2x þ n2yd2y þ n2zd2z−n2xs2x−n2ys2y−n2zn2z

⋮
nNxdNx þ nNydNy þ nNzdNz−nNxsNx−nNysNy−nNznNz

0
BB@

1
CCA,

x ¼ α β γ tx ty tzð ÞT :

Fig. 3 Visualization of Point-to-Plane ICP
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In this case what we want to find is the optimum solution for x including the rotation
α β γð Þ and translation tx ty tzð Þ parameters. It can be simply solved by the singular

value decomposition (SVD) and the optimum will be found by

x* ¼ ATA
� �−1

ATb: ð3Þ

3.1.2 Proposed Weighted Point-to-Plane Iterative Closest Point Method

In the proposed framework, we exploited the weighted Point-to-Plane ICP to impose more weight
value on feature correspondences. Equation (2) can be reproduced in aweighted least-square fashion
like (4).

x* ¼ argmin ∑
N

i−1
Aix−bik k2 ð4Þ

where wi represents the weight on the i-th correspondence. In the proposed method, the weight
values are different depending on the type of the PCD. Specifically, there are two types of PCD:
dense and sparse PCD. The dense PCD represents the point cloud created from the depth frames and

r

x

Neighboring vertex setFig. 5 Visualization of the
neighboring vertex set

Sparse
PCD
-> strong weight

Fig. 4 Visualization of weighted Point-to-Plane ICP
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Fig. 8 Example of Canny edge detector

Fig. 7 Relationship between a radius of a circumcircle and a side of a square

Neighboring vertex set

: noise

: other primitives

Fig. 6 Large and small neighboring vertex set
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the sparse PCD represents the point cloud from the features in the color frames. Fig. 4 illustrates the
weighted Point-to-Plane ICP.

We can represent the cost function by the residual matrix.

Ew xð Þ ¼ wi Aix‐bik k2 ¼ ∑
N

i¼1
wir2i ¼ rTWr ¼ W1=2r

�� ��2 ð5Þ

Fig. 9 Example of the distance transform on the edge

Table 1 Datasets

ID Name Thumbnail
Total length

(frames)

Avg. Speed

(m/s)

Image 

size

Camera

Parameters*

1 freiburg3_teddy 2344 0.248 640x480

fx: 525.0

fy: 525.0

cx: 320.0

cy: 320.0

2 freiburg3_long_office 2509 0.249 640x480

3 freiburg2_xyz 3666 0.058 640x480

4 freiburg1_desk1 595 0.413 640x480

5 kt0_office_room 1510 0.126 640x480
fx: 481.2

fy:-480.0

6 kt0_living_room 1510 0.126 640x480

cx:319.5

cy:239.5

*(fx,fy) : focal length, (cx, cy): principal point
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By using the vector derivative,

∂Ew xð Þ
∂x

¼ b−Axð ÞT WþWT
� �

−Að Þ ¼ −2 b−Axð ÞTWA ¼ 0 ð6Þ

Finally, we can find the optimum value x∗ for the weighted least-square method by finding
the location making the cost function to zero.

x* ¼ ATWA
� �−1

ATWb ð7Þ

3.2 Geometric Constraint

The surface normal vector is an extremely useful input for reconstruction methods and the
incorrect normal vectors will result in an erroneous 3D model. Therefore, it is important to
obtain the consistent surface normal vector even in the situation of noisy PCD which is
common in the modern depth cameras (structure light sensor, time-of-flight camera, Lidar
sensor) [2].

Fig. 10 ATE comparison graph for the sequence ID 1: even the ATE results look similar, but the proposed
method is better with the slightly reduced error when those show close results

Multimed Tools Appl (2018) 77:14381–14406 14389



3.2.1 Normal Estimation Using Principle Component Analysis

The conventional framework, however, includes the simple cross product calculation vulner-
able to the noisy PCD. Hence the robust normal estimation method is necessary. In this paper,
we exploit the normal estimation method using the principle component analysis (PCA) to
elaborate the noisy normal vectors [24].

First, we need to compute the centroid x for the neighboring vertex set {x1, x2, … , xk}
within the radius r of the query point x. Then, a covariance matrix C is obtained by

C ¼ 1

k
∑
k

i¼1
x−xi

� �
x−xi

� �T
ð8Þ

Fig. 5 visualizes the neighboring vertex set with the notations. After applying SVD on the
covariance matrix, the normal vector for the query point is defined by the eigenvector correspond-
ing to the smallest eigenvalue. Due to the nature of the PCA, the orientations of normal vectors are
not consistent for the scene and it should be corrected by the viewpoint of the camera vp.

n∙ vp−x
� �

> 0 ð9Þ

Fig. 11 ATE comparison graph for the sequence ID 2: The proposed method performs better or equal results
compared to the other methods
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If the estimated normal n do not satisfy (9), it should be flipped by multiplying −1. Then we
can finally get the consistent normal vectors for the point cloud. Aside from that, Hugues
Hoppe et al. employed minimum spanning tree to get the consistent tangent plane orientation
[18]. However, it is accurate but very time-consuming method and not appropriate to the real-
time application.

3.2.2 Neighborhood Selection

The critical issue on this approach is the size of the neighboring vertex set. Since we consider
the depth frames rather than unorganized 3D vertices, the size can be defined by the radius r in
the 2D image coordinate. In this case, if the size is too small, the noise can dominate the
reconstruction result, otherwise, the points from other primitives having different depth values
can be included, as shown in Fig. 6. Therefore, the appropriate size of the neighboring vertex
set is required and there are several approaches to determine the size. C. Weber et al. insisted
that a neighborhood with a size of radius 16 performs best [26]. S. Gumhold et al. proposed
radius 10 to 16 and J. Wu et al. exploited radius 12 [13, 28].

In this paper, however, we will use an adaptive size of the radius rather than the fixed size.
S. Holzer et al. proposed the adaptive neighborhood selection for the surface normal estimation

Fig. 12 ATE comparison graph for the sequence ID 3: This sequence has the longest trajectory and slowest
speed. In the slow speed scenario, the proposed method is slightly better than the conventional methods even
though those already show the good ATE result
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[17] and the main contribution of their research to the adaptive size of the neighborhood is
two-fold: depth-dependent smoothing area map and depth change indication map.

The depth-dependent smoothing area map implies the neighborhood size should be dependent
on the depth value at each pixel since the resolution of the depth gets worse as increasing depth.
Equation (10) represents the response of the depth-dependent smoothing area map B(m,n):

B m; nð Þ ¼ α∙β∙D m; nð Þ2 ð10Þ
where α can be defined by the sensor characteristics and β is a user controllable value. D(m,n) is
the depth value at (m,n) position in the image coordinate.

Next, the depth change indication map suggests the neighborhood size should be dependent
on the distance from the distinguishable depth change. It is simply constructed by the depth
change detection threshold. The depth change indication map C(m,n) can be constructed as

C m; nð Þ ¼ 1
if δDx m; nð Þk k≥ threshold
or δDy m; nð Þ�� ��≥ threshold

�

0 otherwise

8<
: ð11Þ

If the depth change at (m,n) position exceeds some threshold value, one is recorded on the
position, otherwise it will be zero.

Fig. 13 ATE comparison graph for the sequence ID 4: This sequence has the shortest trajectory and fastest speed
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The final smoothing area map can be defined by the combination of the depth smoothing
area map and depth change indication map. Equation (12) represents the final neighboring area
map R(m,n):

R m; nð Þ ¼ min B m; nð Þ; T m; nð Þffiffiffi
2

p
	 


ð12Þ

where T(m,n) is the distance transform map on depth change indication map C(m,n) [4]. The
root of two (

ffiffiffi
2

p
) is the dividing factor for the rectangular radius shown in Fig. 7. The details of

the adaptive size of the neighborhood is explained in [17].
Inspired by their research, we determine the size of neighbor in an adaptive neighborhood

selectionmanner. Unlike their approach, we exploit Canny edge detector to get the depth change
on the depth frame. In addition to that, the intensity change on the color frame is exploited since
the minor depth changes are hard to be detected on the depth frame only. After that, we obtained
the distance transform map T′(m, n) on the edge image. Lastly, we exploited the maximum
normal radius instead of the depth-dependent smoothing area map since it is mostly controlled
by the user input. The modified neighboring area map R′(m, n) is described in (13).

Fig. 14 ATE comparison graph for the sequence ID 5: The sequence ID 5 and 6 are computer generated 3D
models including Gaussian noise. Even though it is in a noisy case, the proposed framework performs better than
the conventional ones
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R
0
m; nð Þ ¼ min maximum radius;

T
0
m; nð Þffiffiffi
2

p
	 


ð13Þ

Fig. 8 shows the example of Canny edge detector and Fig. 9 shows the example of distance
transform on the edge image.

3.2.3 Discarding of the Depth near the Boundary

The depth information near the object boundary is unstable and flickering due to the characteristic of
a depth sensor and it will directly affect the quality of the reconstructed 3D scene. Therefore, we
would discard the depth information near the boundary when we estimate the camera trajectory.
Since we already calculated the distance transform map in Section 3.2.2, we can easily discard the
depth information having a T′(m, n) value less than a threshold. In our experiment, we exploited the
threshold value as 5.

4 Experiment

We verify the robustness of our proposed framework by comparing it to other various methods
in the following sections. In Section 4.1, we introduce a methodology we followed to evaluate

Fig. 15 ATE comparison graph for the sequence ID 6
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our framework. Next, we demonstrate the numerical analysis in Section 4.2 and a visual
comparison is shown in Section 4.3.

4.1 Methodology

Even though we are focusing on the generic indoor 3D scene reconstruction framework, there
are many details in the experiment. Here, we describe the methodology we followed to
evaluate our framework.

1) Datasets: we tested our system with six publicly available datasets as shown in Table 1.
We exploited the RGB-D datasets from two sources: Technical University of Munich
(TUM) [25] and Imperial College London (ICL) [15]. The sequences with ID 1 to 4 are
from TUM which they provide the RGB-D images with ground-truth camera trajectories.
The sequences with ID 5 and 6 are from ICL. Unlike the TUM datasets, those are RGB-D
data from computer generated 3D scene model with Gaussian noise in their depth images.
In this paper, we chose the sequences with the noise in PCD to show the robustness.

2) Ground truth: All of the introduced datasets have the ground-truth camera trajectory with
timestamps at each RGB-D frame. Especially for the TUM datasets, the external motion
capture system is used to acquire the pose of the RGB-D camera in 3D space [25]. Special
passive markers are attached on the RGB-D camera and the motion capture system tracks
the position of the markers by triangulation.

Fig. 16 The estimated trajectory for the sequence ID 3 with a section 0–300: the proposed method shows more
consistent result especially on the beginning of the trajectory
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3) Evaluation measure: We evaluate the correctness of the proposed framework by the
Absolute Trajectory Error (ATE) metrics [25]. We first align the estimated and ground-
truth trajectories with the timestamps and then evaluate the absolute pose differences
between them. The Root Mean Squared Error (RMSE) over all timestamps of the
translational components will be compared.

4) Control parameters: There are two types of the constraint as we mentioned: the colorimetric
and geometric constraints. For the colorimetric constraint, we can control the weights for
dense and sparse PCD. The weight value for dense PCD is 0.2 and the weight value for
sparse PCD is 0.8. For the geometric constraint, the maximum radius for a neighboring pixel
is set to 10 and the threshold value for the discarding unreliable depth information is set to 5.

5) Various length of the subsection for subvolumes: Considering the sub-volume based
registration method that we discussed it in Section 2, we had the experiments on the
various size of the subsection for subvolumes {100, 300, 500, 1000}. That is, we divided
the whole frame by the specific size of subsections, and then compared ATE among
various methods on each subsection.

6) System settings: The experiments are conducted on a PC with a CPU of Intel core i7–
4960 3.60GHz, and is accelerated by a GPU of NVidia Geforce GTX 1070.

7) Implementation settings: We implemented the proposed framework based on the bench-
mark implementation of 3D scene reconstruction, also known as Slambench [22]. It is the
publicly-available software framework of 3D scene reconstruction including the well-

Fig. 17 The estimated trajectory for the sequence ID 5 with a section 300–600: on the curve of the trajectory, the
proposed method show a more closer result to the ground-truth trajectory
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organized benchmark module. We modified the input module to process the designated
RGB-D datasets and extended the core 3D scene reconstruction module as we proposed.

4.2 Comparison Graph of Absolute Trajectory Error

In this section, we describe the ATE comparison graph among several methods for the various
sizes of subsection from Figs. 10, 11, 12, 13, 14, and 15. In those figures, the horizontal axis
represents the subsections and the vertical axis means the ATE value. Although the results from
the conventional methods look close to results from proposed method, the proposed method is
better among the comparisons showing the small difference. The detailed numerical ATE values
are shown in Appendix. In the appendix, the bold character represents the minimum ATE value.

4.3 Visual Trajectory Comparison

We show the visualization of the estimated trajectory results representing the explicit differ-
ence from Figs. 16, 17, 18, and 19. The blue curve represents the estimated trajectory from
each method and the black curve represents the ground-truth trajectory. As we can see in these
figures, the proposed method shows a more consistent trajectory than the conventional ones.

Fig. 18 The estimated trajectory for the sequence ID 5 with a section 600–900: only the proposed method shows
the consistent result rather than conventional methods
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4.4 Reconstructed 3D Scene

In this Section, we show the reconstructed 3D scene models to visually compare the differ-
ences. Figure 20 shows the reconstructed 3D scene models for the sequence ID 6 with section
300–600. As you can see in this figure, the crack on the ceiling exists in the result of [23], but
not in the proposed method.

4.5 Elapsed Time

In order to evaluate a time complexity, we displayed the total elapsed time in Table 2. At this
point, the preprocessing time includes the time for the feature extraction, photometric corre-
spondence matching, outlier removal, edge detection and distance transform, which are mainly
operated on CPU. The tracking time includes the core ICP process such as the vertex
correspondence matching, iterative optimization, which are mainly operated on GPU device
in parallel. The unit for time is a millisecond. As you can find in this table, the elapsed time for
the overall process looks promising thanks to the parallel processing.

4.6 Discussion

Currently, the augmented reality field is getting popular and aggressively extends its area to many
applications such as the education, game, industry, and commerce. The augmented reality is such

Fig. 19 The estimated trajectory for the sequence ID 6 with section 0–500
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a broad research topic including the 3D scene reconstruction, camera tracking, human-computer
interaction, computer graphics rendering and so on. Among them, the acquisition of the accurately
reconstructed 3D scene is the starting base of the augmented reality since virtual interactive
characters can be seamlessly composed after understanding the geometric 3D scene. If there is a
crack like Fig. 20(a) in the reconstructed 3d scene, this small difference would invoke an
inconsistent feeling from the augmented reality contents.

Fig. 20 The reconstructed 3D scene models for the sequence ID 6 with section 300–600

Table 2 Elapsed time for each sequence (millisecond)

seq_id = 1 seq_id = 2 seq_id = 3 seq_id = 4 seq_id = 5 seq_id = 6 mean

preprocessing 63.64 78.07 76.29 77.13 53.44 55.93 67.42
tracking 87.77 105.54 98.19 104.71 104.72 105.97 101.15
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5 Conclusion

In this paper, we have presented the extending ideas against the conventional 3D scene reconstruc-
tion method. The conventional method only exploited the depth information from the RGB-D
camera to reconstruct the 3D scene. However, the proposed method not only use the color
information from the camera but also refine the normal vector of the 3D vertices by PCA algorithm
and the distance information to reconstruct the more consistent 3D model of the scene. The
qualitative experiments demonstrate that our method shows more consistent results in terms of the
camera trajectory which is considered as important as the dual problem of the 3D reconstruction
problem. The users can generate the more consistent model of the 3D scene by using the proposed
method and better experience the immersive feeling of the augmented reality system.

Acknowledgements This work was supported by the National Research Foundation of Korea (NRF) Grant
funded by the Korean Government (MSIP) (No. 2011-0030079)

Appendix

Comparison table of the absolute trajectory error

Sequence ID 1:

Section_offset=100

start

frame
[23] [10] [12] Ours

0 0.004959 0.005027 0.004963 0.004896

100 0.012676 0.012537 0.012645 0.013198

200 0.007969 0.008093 0.008015 0.007977

300 0.009146 0.00906 0.009103 0.009078

400 0.012493 0.012359 0.012495 0.012513

500 0.009038 0.009058 0.00903 0.009121

600 0.011745 0.01158 0.011704 0.011769

700 0.011078 0.006407 0.010943 0.010734

800 0.008175 0.008196 0.008154 0.007768

900 0.009705 0.009984 0.00975 0.009786

1000 0.00686 0.00683 0.006843 0.006959

1100 0.010457 0.010102 0.010413 0.01021

1200 0.004587 0.004593 0.0046 0.004591

1300 0.016696 0.016873 0.016619 0.016349

1400 0.007154 0.006933 0.007193 0.007091

1500 0.02781 0.043692 0.028033 0.348338

1600 0.013591 0.013524 0.013501 0.012751

1700 0.00921 0.009032 0.009146 0.008781

1800 0.011597 0.011811 0.011618 0.011258

1900 0.411785 0.188297 0.511691 0.248291

2000 0.011977 0.01161 0.011919 0.011961

2100 0.008034 0.008031 0.008033 0.007999

2200 0.001378 0.001377 0.001376 0.001326

2300 0.000663 0.000668 0.000664 0.000714

Section_offset=300

start

frame
[23] [10] [12] Ours

0 0.01269 0.013046 0.012679 0.013547

300 0.01114 0.011148 0.011114 0.011107

600 0.013161 0.012968 0.013061 0.013041

900 0.011495 0.011331 0.011455 0.011332

1200 0.013392 0.013217 0.013366 0.013483

1500 0.02186 0.034901 0.021084 0.634719

1800 0.585208 0.320629 0.441459 0.153762

2100 0.005722 0.005746 0.005719 0.005722

Section_offset=500

start

frame
[23] [10] [12] Ours

0 0.01699 0.016692 0.016885 0.017118

500 0.014164 0.014071 0.014062 0.0137

1000 0.014976 0.014767 0.0149 0.014927

1500 0.435192 0.204898 0.410075 0.714125

2000 0.012481 0.012785 0.01248 0.012969

Section_offset=1000

start

frame
[23] [10] [12] Ours

0 0.020347 0.020131 0.020214 0.020174

1000 0.796527 0.427849 0.41353 0.638722

2000 0.012481 0.012785 0.01248 0.012969

*The bold character represents the minimum.
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Sequence ID 2:

Section_offset=100

start

frame
[23] [10] [12] Ours

0 0.015841 0.0166950.015791 0.015894

100 0.011803 0.0117570.011771 0.011536

200 0.007522 0.0074920.007466 0.007074

300 0.006901 0.0070720.006804 0.007212

400 0.0077380.0072560.007643 0.007318

500 0.0151790.0104830.014669 0.01258

600 0.011429 0.0113620.011295 0.009836

700 0.006864 0.0068160.006872 0.006323

800 0.005 0.00487 0.004966 0.004829

900 0.019705 0.0200020.019811 0.017214

1000 0.012042 0.01169 0.013324 0.011641

1100 0.015411 0.0194020.015734 0.01531

1200 0.009692 0.0095060.009611 0.009347

1300 0.008763 0.0089220.008749 0.008203

1400 0.009417 0.00929 0.009387 0.007768

1500 0.007633 0.0076750.007581 0.007729

1600 0.0060870.0059130.006082 0.006007

1700 0.0060770.0058890.006081 0.006252

1800 0.0267510.0193020.02676 0.032832

1900 0.004669 0.0047080.004627 0.004451

2000 0.014922 0.0136970.014608 0.012281

2100 0.021314 0.0221670.021149 0.021573

2200 0.016921 0.0169910.016817 0.017435

2300 0.006192 0.0061890.00614 0.005775

2400 0.005222 0.0052690.005194 0.005261

Section_offset=300

start

frame
[23] [10] [12] Ours

0 0.016522 0.017755 0.016448 0.016729

300 0.015052 0.012975 0.014888 0.015224

600 0.013188 0.013109 0.013053 0.011171

900 0.03743 0.039136 0.03768 0.032204

1200 0.014018 0.014437 0.013937 0.013977

1500 0.009857 0.009928 0.009859 0.009476

1800 0.026239 0.023084 0.025969 0.027064

2100 0.021141 0.021733 0.020977 0.021739

2400 0.005222 0.005269 0.005194 0.005261

Section_offset=500

start

frame
[23] [10] [12] Ours

0 0.02486 0.023234 0.024346 0.024294

500 0.012822 0.011992 0.012739 0.011701

1000 0.016991 0.017532 0.016918 0.015946

1500 0.017743 0.017271 0.017697 0.016831

2000 0.02055 0.020624 0.020465 0.020425

Section_offset=1000

start

frame
[23] [10] [12] Ours

0 0.211349 0.021918 0.29865 0.023587

1000 0.046001 0.027531 0.047702 0.070297

2000 0.02055 0.020624 0.020465 0.020425

*The bold character represents the minimum.
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Sequence ID 3:

Section_offset=100

start

frame
[23] [10] [12] Ours

0 0.0038290.003521 0.003753 0.003792

100 0.0057430.005169 0.005625 0.002812

200 0.0044010.003317 0.00427 0.002285

300 0.0108470.010726 0.010861 0.009246

400 0.0047150.004697 0.004765 0.003146

500 0.0047060.004605 0.004635 0.003384

600 0.0045410.004891 0.004534 0.00435

700 0.0096720.009376 0.009938 0.005435

800 0.0051920.004615 0.005027 0.004191

900 0.0056110.005186 0.005538 0.004352

1000 0.0092770.008697 0.009213 0.008712

1100 0.0100270.009615 0.009891 0.008541

1200 0.00378 0.003446 0.003675 0.003224

1300 0.0029990.002857 0.002988 0.003693

1400 0.0028050.002932 0.00282 0.002979

1500 0.0024370.001909 0.002365 0.002378

1600 0.0024770.002405 0.002436 0.00259

1700 0.0067080.006166 0.006631 0.007373

1800 0.0058390.005351 0.005736 0.006149

1900 0.0018870.001818 0.001868 0.001968

2000 0.0015420.00164 0.001508 0.001724

2100 0.0014590.001424 0.00144 0.001472

2200 0.0028070.002778 0.002787 0.002611

2300 0.0015860.001341 0.001581 0.001468

2400 0.0032730.003159 0.003271 0.003373

2500 0.0026740.002621 0.002668 0.002786

2600 0.0046750.004651 0.004639 0.004496

2700 0.0053070.005142 0.005202 0.004923

2800 0.0041250.003921 0.00411 0.004193

2900 0.00389 0.003829 0.003894 0.004035

3000 0.0062850.006058 0.006143 0.006057

3100 0.0039120.00359 0.003815 0.00348

3200 0.0040120.003861 0.003947 0.004212

3300 0.0014890.001367 0.00149 0.001395

3400 0.0021210.001871 0.002098 0.002316

3500 0.00217 0.001989 0.002149 0.002009

600 0.0006630.000586 0.000639 0.000659

Section_offset=300

start

frame
[23] [10] [12] Ours

0 0.01508 0.013643 0.015216 0.007307

300 0.012899 0.012514 0.01304 0.010721

600 0.006944 0.0079 0.007602 0.006315

900 0.023846 0.022527 0.023531 0.021886

1200 0.008123 0.00869 0.00817 0.009266

1500 0.004402 0.0044090.004365 0.004634

1800 0.005552 0.0051850.005499 0.0055

2100 0.004133 0.0038740.004134 0.005028

2400 0.005129 0.0052260.005067 0.005708

2700 0.008889 0.008306 0.008749 0.00821

3000 0.006142 0.0058690.006048 0.006026

3300 0.002348 0.0019590.002304 0.002227

3600 0.000663 0.0005860.000639 0.000659

Section_offset=500

start

frame
[23 [10] [12] Ours

0 0.020726 0.0193330.020881 0.012834

500 0.007062 0.0069820.007058 0.006542

1000 0.016902 0.0162890.016722 0.015829

1500 0.012671 0.0115940.012436 0.012152

2000 0.005727 0.00515 0.005669 0.006679

2500 0.010645 0.0095650.010455 0.009811

3000 0.005446 0.0052840.005382 0.005667

3500 0.002168 0.0019820.00214 0.002026

Section_offset=1000

start

frame
[23] [10] [12] Ours

0 0.018206 0.01789 0.018213 0.015227

1000 0.016903 0.016661 0.016798 0.0162

2000 0.011971 0.010695 0.011707 0.011119

3000 0.005107 0.004959 0.005046 0.005321

*The bold character represents the minimum.
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Sequence ID 4: 

Section_offset=100

start

frame
[23] [10] [12] Ours

0 0.021776 0.021823 0.021762 0.021211

100 0.049838 0.05065 0.049917 0.050599

200 0.020648 0.021702 0.020903 0.022807

300 0.03363 0.036147 0.033316 0.035954

400 0.017382 0.016648 0.017219 0.015788

500 0.005075 0.00503 0.005059 0.005311

Section_offset=300

start

frame
[23] [10] [12] Ours

0 0.057408 0.090017 0.05597 0.071398

300 0.029404 0.030117 0.029095 0.028989

Section_offset=500

start

frame
[23 [10] [12] Ours

0 0.054579 0.078293 0.053496 0.059787

500 0.005075 0.00503 0.005059 0.005311

Section_offset=1000

start

frame
[23] [10] [12] Ours

0 0.053057 0.075028 0.052051 0.056653

Sequence ID 5:

Section_offset=100

start

frame
[23] [10] [12] Ours

0 0.006553 0.006621 0.006579 0.005602

100 0.008171 0.008033 0.008088 0.005674

200 0.015073 0.014082 0.014955 0.008602

300 0.012848 0.012309 0.012725 0.008755

400 0.013844 0.013716 0.013795 0.010758

500 0.004076 0.00404 0.004066 0.003884

600 0.005318 0.005189 0.005296 0.003706

700 0.007156 0.007176 0.006999 0.002615

800 0.005229 0.004798 0.005188 0.004919

900 0.009723 0.007341 0.010677 0.029052

1000 0.006951 0.003373 0.005857 0.016587

1100 0.009603 0.008735 0.009388 0.003382

1200 0.003753 0.00365 0.003776 0.002881

1300 0.005673 0.005428 0.005468 0.002093

1400 0.012366 0.010816 0.014589 0.011681

1500 0.043934 0.025804 0.04248 0.015434

Section_offset=300

start

frame
[23] [10] [12] Ours

0 0.011371 0.011268 0.011136 0.009592

300 0.032447 0.028297 0.034449 0.014649

600 0.251593 0.182271 0.263072 0.008615

900 0.01421 0.009577 0.015734 0.053083

1200 0.126579 0.11556 0.110464 0.399631

1500 0.043934 0.025804 0.04248 0.015434

Section_offset=500

start

frame
[23] [10] [12] Ours

0 0.01329 0.013089 0.01299 0.010828

500 0.01157 0.010389 0.00842 0.009516

1000 1.801615 2.279172 1.190368 1.314578

Section_offset=1000

start

frame
[23] [10] [12] Ours

0 0.011794 0.011628 0.011554 0.010315

1000 1.803041 2.283701 1.186678 1.31262

*The bold character represents the minimum.

*The bold character represents the minimum.
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Sequence ID 6:

Section_offset=100

star

t

fra

me

[23] [10] [12] Ours

0
0.003

766

0.003

599

0.003

687

0.002

212

100
0.003

35

0.003

29

0.003

333

0.002

707

200
0.002

956

0.002

893

0.002

922

0.003

571

300
0.011

496

0.007

718

0.010

277

0.004

1

400
0.003

856

0.003

619

0.003

861

0.003

978

500
0.004

276

0.004

207

0.004

218

0.003

053

600
0.002

163

0.002

088

0.002

188

0.001

287

700
0.001

865

0.001

38

0.001

81

0.001

272

800
0.004

54

0.003

843

0.004

218

0.002

882

900
0.200

328

0.165

584

0.210

575

0.071

561

100

0

0.004

842

0.005

14

0.005

545

0.002

942

110

0

0.005

648

0.009

634

0.006

423

0.003

545

120

0

0.001

826

0.002

131

0.001

853

0.000

734

130

0

0.002

011

0.001

644

0.001

967

0.001

429

140

0

0.003

188

0.003

188

0.003

19

0.003

018

150

0

0.001

579

0.001

521

0.001

559

0.001

262

Section_offset=300

star

t

fra

me

[23] [10] [12] Ours

0
0.005

629

0.005

305

0.005

522

0.002

982

300
0.007

496

0.005

395

0.006

803

0.003

324

600
0.003

92

0.003

71

0.003

945

0.002

062

900
0.195

453

0.190

793

0.208

065

0.320

689

120

0

0.017

472

0.009

136

0.015

83

0.080

409

150

0

0.001

579

0.001

521

0.001

559

0.001

262

Section_offset=500

star

t

fra

me

[23] [10] [12] Ours

0
0.007

756

0.006

774

0.007

681

0.003

552

500
0.069

905

0.096

784

0.070

448

0.051

876

100

0

0.766

645

0.486

502

0.213

724

0.886

567

150

0

0.001

579

0.001

521

0.001

559

0.001

262

Section_offset=1000

star

t

fra

me

[23] [10] [12] Ours

0
0.007

546

0.007

369

0.007

532

0.036

653

100

0

0.800

19

0.501

283

0.213

416

0.895

78

*The bold character represents the minimum.
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